Удали Это
Удаление навязчивых программ и вирусов. Видео и текстовые инструкции.
Страницы
- Блог
- Рекомендуемые программы
среда, 12 августа 2020 г.
Как удалить Wacatac Trojan
Что такое Wacatac Trojan
Wacatac Trojan — это вредоносное приложение которое проникает в устройство через спам-сообщения, через загрузку пиратского программного обеспечения или при посещении вредоносных сайтов. Наличие этого трояна наносит значительный ущерб системе и вашей конфедициальной информации. Wacatac Trojan имеет доступ до ваших личных данных.
Он может собирать ваши данные для входа, банковские реквизиты, логины, пароли без вашего ведома. Это делается для получения дохода разработчков программы. Мошенники монетизируют эту информацию. С помощью ваших личных данных мошенники совершают онлайн-покупки, денежные переводов и даже занимают деньги у контактов жертвы в социальных сетях, учетных записях электронной почты. Это очень опасно, потому что могут накопиться долги.
Введение в Машинное Обучение (Машинное Обучение: Zero to Hero, часть 1)
Помимо сбора личных данных, Wacatac Trojan внедряет изменения в настройки устройства. Троян может вызывать скачивание инфекционных программ без вашего согласия. То есть, ваша система подвергнется двойной, а то и тройной атаке.
К огромному ущербу со стороны трояна, разработчики пытаются вымогать деньги с жертв, отображая такое письмо:
Источник: udalieto.blogspot.com
Машинное обучение: просто о сложном
За последние 15 лет машинное обучение (machine learning, ML) получило широкое распространение, но большинство людей не до конца не осознает его роль в повседневной жизни. Многие из нас ежедневно используют приложения, в основе которых лежат технологии искусственного интеллекта (ИИ) и машинного обучения. Эти технологии уже стали причиной революции во многих отраслях, например, способствовали появлению виртуальных помощников, таких, как Siri или семейства виртуальных ассистентов Салют (Сбер, Джой, Афина), позволили осуществлять прогнозирование трафика с помощью Google Maps. Рассказываем простыми словами, что такое machine learning, что оно представляет из себя сегодня и какие преимущества способно обеспечить компаниям из разных сфер деятельности.
Что такое машинное обучение?
Машинное обучение — это специализированный способ, позволяющий обучать компьютеры, не прибегая к программированию. Отчасти это похоже на процесс обучения младенца, который учится самостоятельно классифицировать объекты и события, определять взаимосвязи между ними.
ML открывает новые возможности для компьютеров в решении задач, ранее выполняемых человеком, и обучает компьютерную систему составлению точных прогнозов при вводе данных. Оно стимулирует рост потенциала искусственного интеллекта, являясь его незаменимым помощником, а в представлении многих даже синонимом.
Вопрос Ребром — Wylsacom
Наконец, машинное обучение — одна из наиболее распространенных форм применения искусственного интеллекта современным бизнесом. Если компания еще не использует ML, то в ближайшее время наверняка оценит его потенциал, а ИИ станет основным двигателем IT-стратегии многих предприятий. Ведь искусственный интеллект уже сегодня играет огромную роль в трансформации развития ИТ-индустрии: клиенты больше внимания уделяют интеллектуальным приложениям, чтобы развивать свой бизнес с помощью ИИ. Он применим к любому рабочему процессу, реализованному в программном обеспечении, — не только в рамках традиционной деловой части предприятий, но также в исследованиях, производственных процессах и, во все большей степени, самих продуктах.
Примечание
На международной конференции по искусственному интеллекту и анализу данных Artificial Intelligence Journey (AI Journey) президент по глобальным продажам, маркетингу и операциям Microsoft Жан-Филипп Куртуа сообщил , что пандемия COVID-19 форсировала интерес к использованию машинного обучения: 80% компаний уже внедряют его в свою деятельность, а 56% планируют увеличить объем инвестиций в эту сферу.
Необычайный успех machine learning привел к тому, что исследователи и эксперты в области ИИ сегодня по умолчанию выбирают этот метод для решения задач.
Machine Learning: принципы и задачи
В основе машинного обучения лежат три одинаково важных компонента:
- Данные. Собираются всевозможными способами. Чем больше данных, тем эффективней машинное обучение и точнее будущий результат.
- Признаки. Определяют, на каких параметрах строится машинное обучение.
- Алгоритм. Выбор метода машинного обучения (при условии наличия хороших данных) будет влиять на точность, скорость работы и размер готовой модели.
Примечание
Доверие к результатам машинного обучения должно строиться на понимании: они хороши настолько, насколько хороши данные, на которых обучается алгоритм.
В основу существования и развития машинного обучения легли три основных принципа:
- Инновационность: возможности ML открывают новые перспективы развития и роста практически всех отраслей экономики.
- Специфичность: машинное обучение применяется для внедрения и разработки новых продуктов исключительно людьми, которые разбираются в IT-технологиях.
- Простота: продукты, реализуемые с использованием технологий машинного обучения, становятся понятны даже школьникам и людям преклонного возраста.
Задачи, которые способно решить машинное обучение, напрямую определяют выгоды для бизнеса и возможности решения социальных проблем государствами разных стран. К основным задачам относятся:
- Регрессия. Предоставляет прогноз на основе выборки объектов с различными признаками.По итогам анализа данных на выходе получается число или числовой вектор. Например, таким образом работает кредитный скоринг — оценка кредитоспособности потенциального заёмщика.
- Классификация. Выявляет категории объектов на основе имеющихся параметров. Продолжает традиции машинного зрения, поэтому часто можно встретить термин «распознавание образов»: например, идентификация разыскиваемых людей по фото или на основании словесного описания внешности.
- Кластеризация. Разделяет данные на схожие категории по объединяющему признаку. Например, космические объекты кластеризируют по удаленности, размерам, типам и другим признакам.
- Идентификация. Отделяет данные с заданными параметрами от остального массива данных. К примеру, участвует в постановке медицинского диагноза по набору симптомов.
- Прогнозирование. Работает с объемами данных за определенный период и предсказывает на основе анализа их значение через заданный период времени. Примером может служить прогноз погоды.
- Извлечение знаний. Исследует зависимости между рядом показателей одного и того же явления или события. Например, находит закономерности во взаимодействии биржевых показателей.
Как видим, спектр задач машинного обучения широк, что подтверждает его перспективность в использовании как коммерческими предприятиями, так и в социальных проектах.
Как это работает: типы машинного обучения
Для простоты восприятия типы машинного обучения принято разделять на три категории:
- обучение с учителем (supervised learning);
- обучение без учителя (unsupervised learning);
- обучение с подкреплением (reinforcement learning).
Обучение с учителем
Этот тип максимально похож на процесс познания окружающего мира ребенком, только в роли малыша выступает алгоритм. Данные, подготовленные для анализа, изначально содержат правильный ответ, поэтому цель алгоритма — не ответить, а понять, «Почему именно так?» путем выявления взаимосвязей. Результатом становится способность выстраивать корректные прогнозы и модели.
Обучение без учителя
Для данного типа обучения ключевым понятием является паттерн — обрабатывая значительные массивы данных, алгоритм должен сперва самостоятельно выявлять закономерности. На следующем этапе на основе выявленных закономерностей машина интерпретирует и систематизирует данные.
Обучение с подкреплением
Принципы обучения с подкреплением заимствованы из психологических экспериментов: машина пытается найти оптимальные действия, которые будет предпринимать, находясь в наборе различных сценариев. Эти действия могут иметь как краткосрочные, так и долгосрочные последствия, а от алгоритма требуется обнаружить эти связи.
Инструменты machine learning
Инструменты машинного обучения используют на следующих этапах:
- сбор и подготовка данных;
- построение модели;
- обучение и развертывание приложений.
Для выполнения каждого из этих этапов применяются специализированные платформы. Они различаются по языку программирования (Python, Cython, C, C++, CUDA, Java), операционным системам (Linux, Mac OS, Windows) и тому, какие задачи можно решить с их помощью.
Сегодня на рынке представлено несколько десятков программных инструментов:
- TensorFlow;
- Shogun;
- Keras.io;
- Rapid Miner;
- Google Cloud ML Engine;
- Amazon Machine Learning (AML);
- Accord.NET;
- Apache Mahout;
- Microsoft Azure ML;
- SberCloud ML Space
Практическое применение ML-технологий
Машинное обучение уже применяется во всех сферах деятельности человека. Еще в 2017 году под управлением Стэнфордского университета был запущен новый индекс AI100 для отслеживания динамики в сфере ИИ. Согласно данным, полученным университетом, количество стартапов с 2000 по 2018 год выросло в 14 раз. Рассмотрим, в каких областях нас ждут технологические прорывы благодаря ML.
Робототехника
В будущем роботы станут самообучаться ранее поставленным перед ними задачам. К примеру, смогут работать над добычей полезных ископаемых — нефти, газа и других. Они смогут, например, изучать морские глубины, тушить пожары. Программисты могут самостоятельно не писать массивные и сложные программы, опасаясь допустить ошибку в коде. ИИ повлияет и на повышение качества частной жизни человека: у нас уже есть беспилотные автомобили, роботы-пылесосы, трекеры сна, физической активности и здоровья и прочие продукты интернета поведения.
Маркетинг
Самый наглядный пример использования машинного обучения в маркетинге — поисковые системы Google и Яндекс, которые с его помощью контролируют релевантность рекламных объявлений.Социальные сети FaceBook, ВКонтакте, Instagram и другие применяют собственные аналитические машины для исследования интересов пользователей и совершенствования персонализации новостной ленты.Маркетинговые исследования, предваряющие разработку и релиз продуктов компании, станут проще с точки зрения реализации, а итоговые данные будут более точными. Выделение кластеров в группах со схожими параметрами превратит кастомизированные предложения в реальность — можно будет решать задачи не групп потребителей, а каждого в отдельности.
Безопасность
Современную сферу обеспечения безопасности невозможно представить без машинного обучения. Системы распознавания лиц в метро и использование камер, сканирующих лица и номера машин при движении по автодорогам, стали неотъемлемой частью человеческой жизни и незаменимыми помощниками для полиции в поиске преступников и потерявшихся людей.
Финансовый сектор и страхование
Более точные биржевые прогнозы и оценка капитализации брендов, решения о выдаче кредитных продуктов частным лицам и предприятиям, определение стоимости и целесообразности страховки и даже снижение очередей в офисах при параллельном сокращении издержек на персонал — только часть возможностей, которые станут доступны в этой сфере.
Общественное питание
На основе Big Data разрабатываются специальные предложения для гостей с учетом загрузки посадочных мест в ресторанах и кафе, функционируют сервисы по планированию закупок для поваров.
Примечание
Воронежская пивоварня Brewlok и разработчики из NewShift решили использовать возможности Big Data для разработки рецепта идеального пива. На протяжении месяца они собирали отзывы и выделяли критерии оценки вкуса, аромата и цвета. На основе полученных данных из почти двух с половиной тысяч отзывов аналитики сформулировали описание «идеального пива», которое легло в основу рецепта.
Медицина
В медицинских учреждениях машинное обучение позволяет быстро обрабатывать данные пациента, производить предварительную диагностику и подобрать индивидуальное лечение, опираясь на сведения о заболеваниях пациента из базы данных. ML также позволяет автоматически выделять группы риска при появлении новых штаммов вирусных заболеваний.
Добыча полезных ископаемых
Анализ почвы доказывает или опровергает наличие полезных ископаемых, помогает очертить площадь будущей разработки.
Примечание
Серьезным препятствием для повсеместного использования технологий машинного обучения был недостаток у значительного количества компаний финансовых ресурсов и инфраструктуры. Специалисты SberCloud разработал ML Space — платформу для ML-разработки полного цикла и совместной работы Data Science-команд над созданием и развертыванием моделей машинного обучения. Сервис предоставляет уникальную возможность эффективного внедрения машинного обучения в бизнес-процессы.
Резюме
Технологии машинного обучения уже стали частью повседневной жизни, при этом количество стартапов и продуктов на основе машинного обучения активно растет. Будучи причиной технологических революций в некоторых сферах экономики, ML способно быть драйвером в масштабах бизнеса и государств. Сегодня самое время задуматься об интеграции машинного обучения в бизнес-процессы, чтобы не утратить конкурентоспособность.
Технологии искусственного интеллекта и машинного обучения уже определяют экономический успех предприятий. По данным консалтинговой компании Gartner порядка 50% процессов в сфере обработки и анализа данных будут автоматизированы с помощью ИИ к 2025 году, что снизит острую нехватку высококвалифицированных специалистов. Компания SberCloud следует самым современным трендам.
ИИ является неотъемлемой частью разработки наших продуктов и услуг. SberCloud располагает достаточными материальными ресурсами: это и самый мощный в России суперкомпьютер “Кристофари”, облачная инфраструктура и платформа ML Space. Платформа позволяет ускорить, оптимизировать и упростить процесс обучения моделей, препроцессинга данных и развертывания моделей на высокопроизводительной инфраструктуре с целью последующего обращения к этим моделям для распознавания или прогнозирования по новым данным. Сегодня ML Space — это единственная в мире облачная платформа, позволяющая обучать модели более чем на 1000 графических процессоров (GPU) Мария Рябенко Старший технический писатель направления AI Cloud
Источники
- Информационно-аналитический ресурс по машинному обучению
- Wikipedia.org
- Machine learning and learning theory research
Запросите бесплатную консультацию по вашему проекту
Оставить заявку
Источник: sbercloud.ru
«ML-разработчик»: кто это, обязанности, зарплаты и как им стать в 2022 году. Обзор профессии.
Обучение
Автор Роман Семенцов На чтение 56 мин. Просмотров 1.1k.
Кто такой ML разработчик?
ML-разработчик — это программист, который работает с машинным обучением (Machine Learning) и с помощью специальных наборов данных и алгоритмов обучает искусственный интеллект.
Что делают ML разработчики и чем занимаются?
Обязанности на примере одной из вакансий:
- Адаптация и совершенствование существующих алгоритмов;
- Поиск и внедрение новых алгоритмов;
- Оценка эффективности решений ML;
- Обмен знаниями с командой разработчиков, разработчиками и клиентами;
- Написание качественного кода на Python;
- Создание и поддержка ML-инфраструктуры и инструментов для боевых датасаентистов на проектах;
- Уточнение и формирование требований к инфраструктуре и инструментам совместно с боевыми датасаентистами, менеджерами и другими коллегами.
Что должен знать и уметь ML разработчик?
Требования к ML разработчикам:
- Unix
- Python
- Опыт работы с продакшном
- Знание базового ML
- Docker
- Git
- и других схожих инструментов.
Востребованность и зарплаты ML разработчиков
На сайте поиска работы в данный момент открыто 886 вакансий, с каждым месяцем спрос на ML разработчиков растет.
Количество вакансий с указанной зарплатой ML разработчика по всей России:
- от 100 000 руб. – 195
- от 200 000 руб. – 142
- от 300 000 руб. – 88
- от 405 000 руб. – 46
- от 505 000 руб. – 19
Вакансий с указанным уровнем дохода по Москве:
- от 100 000 руб. – 109
- от 200 000 руб. – 88
- от 300 000 руб. – 54
- от 400 000 руб. – 25
- от 505 000 руб. – 12
Вакансий с указанным уровнем дохода по Санкт-Петербургу:
- от 195 000 руб. – 21
- от 340 000 руб. – 10
- от 490 000 руб. – 4
- от 785 000 руб. – 1
Как стать ML-разработчиком и где учиться?
Варианты обучения для ML разработчика с нуля:
- Самостоятельное обучение – всевозможные видео на YouTube, книги, форумы, самоучители и т.д. Плюсы – дешево или очень недорого. Минусы – нет системности, самостоятельное обучение может оказаться неэффективным, полученные навыки могут оказаться невостребованными у работодателя;
- Онлайн-обучение. Пройти курс можно на одной из образовательных платформ. Такие курсы рассчитаны на людей без особой подготовки, поэтому подойдут большинству людей. Обычно упор в онлайн-обучении делается на практику – это позволяет быстро пополнить портфолио и устроиться на работу сразу после обучения.
Ниже сделали обзор 15+ лучших онлайн-курсов.
15+ лучших курсов для обучения ML разработчика: подробный обзор
1 место. Курс «Профессия Data Scientist: машинное обучение» — Skillbox
Стоимость: Рассрочка на 31 месяц — 6 154 ₽ / мес
Вы научитесь создавать аналитические системы и использовать алгоритмы машинного обучения, освоите работу с нейросетями. Наполните портфолио и получите престижную профессию.
- Длительность 19 месяцев
- Помощь в трудоустройстве
- 7 курсов в одной программе
- Доступ к курсу навсегда
На рынке не хватает специалистов по Data Science
включая Сбербанк, Яндекс и Тинькофф, ищут специалистов по Data Science
зарплата начинающего специалиста
Кому подойдёт этот курс
- Людям без подготовки в IT
Вы получите базовые навыки по программированию, аналитике, статистике и математике, которые откроют путь к карьере в Data Science и Machine Learning. Сможете использовать свои знания сразу на практике.
Вы прокачаете свои знания и навыки в программировании на Python и R. Подтянете математику и умение мыслить как аналитик, использовать алгоритмы машинного обучения для решения бизнес-задач — и усилите портфолио мощными проектами.
- Менеджерам и владельцам бизнеса
Научитесь использовать данные для построения прогнозов и оптимизации бизнес-процессов и переведёте компанию на новый уровень.
Чему вы научитесь
- Программировать на Python
Освоите самый популярный язык для работы с данными.
- Визуализировать данные
Сможете разрабатывать дашборды или интерактивную инфографику.
- Работать с библиотеками и базами данных
Научитесь работать с библиотеками Pandas, NumPy и Matpotlib и освоите базы данных PostgreSQL, SQLite3, MongoDB.
- Применять нейронные сети для решения реальных задач
Освоите фреймворки для обучения нейронных сетей Tensorflow и Keras. Узнаете, как устроены нейронные сети для задач компьютерного зрения и лингвистики.
- Строить модели машинного обучения
Изучите разные алгоритмы, научитесь решать задачи регрессии, классификации и кластеризации.
- Создавать рекомендательные системы
Построите рекомендательную систему и добавите её в своё портфолио.
Помогаем построить карьеру мечты
Вас ждёт индивидуальная карьерная консультация, помощь в оформлении резюме и портфолио. На основе ваших пожеланий подберём подходящие вакансии, подготовим к собеседованию и сделаем всё, чтобы вы получили оффер.
За 2021 год мы трудоустроили более 1000 студентов на работу по новой профессии
Программа
Вас ждут 7 курсов с разным уровнем сложности, знание которых можно приравнять к году работы.
- 82 тематических модуля
- 288 онлайн-уроков
- Python для Data Science
- Введение в Data Science
- Введение в Python
- Основы
- Операторы, выражения
- Условный оператор if, ветвления
- Условный оператор if: продолжение
- Цикл while
- For: циклы со счетчиком
- For: циклы со счетчиком, часть 2. Функция range
- Цикл for: работа со строками
- Вложенные циклы
- Числа с плавающей точкой (int/float)
- Функции
- float 2
- Установка и настройка IDE
- Базовые коллекции: Cписки
- Методы для работы со списками
- List comprehensions
- Базовые коллекции: Строки
- Базовые коллекции: словари и множества
- Базовые коллекции: Кортежи
- Функции — Рекурсия
- Работа с файлами
- Исключения: работа с ошибками
- Введение в ООП
- Основные принципы ООП
- Итераторы и генераторы
- Библиотека NumPy: методы анализа массивов
- Библиотека NumPy: способы преобразования массивов
- Библиотека pandas: индексация и выбор данных
- Библиотека pandas: применение функций, группировка, сортировка
- Основы визуализации данных с помощью Matplotlib
- Продвинутая визуализация с Matplotlib
- Визуализация с Seaborn
- Мастер-класс: разведочный анализ (EDA)
- Курсовая работа. Подготовка аналитического отчёта на основе имеющихся данных в качестве помощи продюсерам образовательных программ эффективно выстраивать стратегию по обновлению и улучшению курсов
- Чтение и запись данных: CSV, XLSX
- Основы SQL
- Чтение и запись данных: JSON, MongoDB
- Работа со строками
- Курсовая работа. Часть 1. Подготовка аналитического отчёта для HR-отдела. На основе аналитики необходимо составить рекомендации для отдела кадров по стратегии набора персонала и взаимодействию с сотрудниками
- Курсовая работа. Часть 2. подготовка аналитического отчёта для SMM-отдела компании Skillbox на основе паблика Skillbox «ВКонтакте»
- Основы статистики и теории вероятностей
- Как врать при помощи статистики
- Базовые математические объекты и SymPy. Дроби и преобразования
- Базовые математические объекты и SymPy. Функции и дополнительные объекты
- Функции одной переменной, их свойства и графики
- Интерполяция и полиномы: квадратичные и кубические функции
- Аппроксимация и преобразование функций: сдвиги, растяжения, сжатия
- Аппроксимация и работа с производными
- Функции нескольких переменных, их свойства и графики
- Частные производные функции нескольких переменных
- Векторы и матрицы. Градиент
- Линейная регрессия и системы линейных уравнений
- Разложение матриц. Собственные векторы и значения
- Основные концепции Machine Learning (ML)
- Жизненный цикл ML-проекта
- Регрессия: метрики качества, преобразование входных данных
- Регрессия: регуляризация и градиентный спуск
- Классификация: kNN, наивный байесовский классификатор, деревья решений
- Классификация: метрики качества классификации и многоклассовая классификация
- Кластеризация
- Дополнительные техники: понижение размерности
- Дополнительные техники: бустинг и стекинг
- Знакомство с Kaggle
- Курсовая работа. Проанализировать данные телекоммуникационной компании и спрогнозировать отток пользователей на основе демографических характеристик, услуг, которыми они пользуются, длительности пользования услугами, метода и размера оплаты
- Введение в нейронные сети
- Обучение нейронных сетей
- Нейронные сети на практике
- Свёрточные нейросети для задачи классификации изображений: введение в свёртки (многоканальные свёртки, рецептивное поле)
- Свёрточные нейросети для задачи классификации изображений: продвинутые операции со свёрткой (архитектуры сетей VGG и ResNet, задача Transfer Learning для свёрточных сетей)
- Семантическая сегментация: слабая локализация и полносвёрточные нейросети (FCN)
- Семантическая сегментация: продвинутые архитектуры FCN для семантической сегментации
- Детектирование объектов. Задачи классификации и локализации
- Детектирование объектов. Анализ и реализация R-CNN-архитектуры
- Детектирование объектов. Разбор популярных архитектур (Fast/Faster R-CNN, YOLO, SSD) и знакомство с TensorFlow Object Detection API
- От дискриминативных моделей к генеративным. Style transfer
- Генеративные состязательные сети
- Введение в NLP
- NLP на нейросетях. Рекуррентные нейросети, классификация текстов
- NLP на нейросетях. Языковые модели, Attention, Transformer
- Обучение с подкреплением. Q-Learning
- Обучение с подкреплением. Deep Q-Learning
- Ускорение и оптимизация нейронных сетей
- Внедрение DL моделей в production
- Введение в рекомендательные системы и задачи ранжирования
- Современные подходы к построению рекомендательных систем
- Как стать первоклассным программистом
- Вёрстка email-рассылок. Советы на реальных примерах
- The state of soft skills
- Как мы создавали карту развития для разработчиков
- Как общаться по email и эффективно работать с почтой
- Повышение своей эффективности
- Спор о первом языке программирования
- Саморазвитие: как я не усидел на двух стульях и нашёл третий
- Data-driven подход к продуктивности — инсайты из данных миллиона людей
- Протокол HTTP
- Введение в алгоритмы
- IT Resume and CV
- Job interview: questions and answers
- Teamwork
- Workplace communication
- Business letter
- Software development
- System concept development and SRS
- Design
- Development and Testing
- Deployment and Maintenance
Ваше резюме после обучения
- Должность Специалист по машинному обучению
- Зарплата от:100 000 ₽
- Владение Python для машинного обучения
- Применение алгоритмов машинного обучения
- Работа с различными источниками данных: CSV, XML и XLS
- Написание рекомендательных систем
- Работа с базами данных MongoDB, PostgreSQL, SQLite3 и SQL
- Работа с нейронными сетями
- Работа с библиотеками pandas, numpy, matplotlib
Диплом Skillbox
Подтвердит, что вы прошли курс, и станет дополнительным аргументом при устройстве на работу.
Источник: romansementsov.ru
Trojan:Win32/Wacatac .D!ml — что это за вирус? Как удалить?
Trojan:Win32/Wacatac .D!ml — что это за вирус? Это троян? Как удалить бесплатно в Windows 10?
комментировать
в избранное бонус up —>
Алекс 98 [57.2K]
более года назад
Вообще, судя по названию, то очень похоже на какой-то безобидный «троян». Однако, не каждый «троян» — это троян! Может быть это и какой-то другой компонент, но точно не системный и лучше его удалить. Советую проверить файл антивирусом и лучше лицензионным. Если хороший антивирус лицензионный заподозрит неладное, то предложит сам удалить компонент.
Советую использовать такие антивирусные программы как: «Касперский», «Доктор Веб», «Аваст» и обязательно с лицензией.
в избранное ссылка отблагодарить
Serj101019 80 [0]
По поводу полезности «Аваста»-не уверен. я бы заменил на «ESSETNod32 » — более года назад
комментировать
Serj1 01019 80 [0]
более года назад
Здравствуйте.Попробу йте бесплатный софт AVZ и Malwarbytes(лучший эффект в «безопасном режиме». Много лет пользуюсь без горя.
Источник: www.bolshoyvopros.ru