Двигательная система – это система, регулирующая работу скелетных мышц, то есть движения. В табл. 1 представлен общий план организации данной системы, а также функции структур этой системы.
Общий план организации двигательной системы
Структура | Функция, выполняемая изолированной структурой | Роль структуры в осуществлении движения |
Подкорковые и корковые мотивационные зоны | Побуждение к действию | План |
Ассоциативные зоны коры | Замысел действия | План |
Базальные ганглии Мозжечок | Схемы целенаправленных движений (врожденные и приобретенные) | Программа |
Таламус Двигательная кора | Схемы целенаправленных движений (врожденные и приобретенные) | Программа и ее выполнение |
Ствол мозга | Регуляция позы | Выполнение |
Спинномозговые нейроны | Моно- и полисинаптические рефлексы | Выполнение |
Моторные единицы | Длина и напряжение мышц | Выполнение |
Лекция «Частная физиология ЦНС. Часть 3. Физиология промежуточного и конечного мозга»
Двигательная система отвечает за осуществление как простых рефлексов (примером может служить отдергивание руки после соприкосновения с горячим предметом), так и сложных поведенческих актов, связанных с процессами высшей нервной деятельности. Из таблицы видно, что двигательная система включает несколько уровней регуляции, низшим из которых является двигательная (моторная) единица. Двигательная единица включает один двигательный нейрон (мотонейрон), который связан с несколькими мышечными волокнами (рис. 1).
В систему регуляции движений вовлечены различные отделы ЦНС, начиная от спинного мозга и заканчивая корой больших полушарий и подкорковыми (базальными) ядрами (ганглиями). При осуществлении двигательного рефлекса импульсы от проприорецепторов (рецепторов мышц и сухожилий) по чувствительному пути поступают в спинной мозг, а от него по восходящим путям направляются в различные отделы головного мозга (рис. 53), и, в конечном счете, в коре больших полушарий осуществляется высший уровень анализа и синтеза поступивших раздражений. Из ЦНС импульсы по двигательным (моторным) путям достигают мышечных волокон, и совершается движение.
Рис. 1. Моторные (двигательные) единицы
Двигательная система выполняет четыре основные функции:
1) отвечает за поддержание определенной позы;
2) способствует ориентации на внешний раздражитель;
3) регулирует перемещение тела в пространстве;
4) обеспечивает манипулирование внешними предметами.
Каждый отдел ЦНС играет определенную роль в регуляции позы и движений.
Роль спинного мозга в регуляции мышечного тонуса и двигательной
Активности
Рефлекторная дуга спинальных рефлексов включает: рецептор, чувствительный (афферентный) путь, чувствительный нейрон (расположен в спинномозговом узле), вставочный нейрон (интернейрон), расположенный в задних рогах спинного мозга, двигательный нейрон (мотонейрон), расположенный в передних рогах спинного мозга, двигательный (эфферентный) путь и эффектор (скелетная мышца, гладкая мышца, железа, сердце). К эффектору импульсы могут идти как по аксонам мотонейронов, так и по постганглионарным волокнам ВНС.
Устройство и работа мозга — курс Вячеслава Дубынина на ПостНауке
Для поддержания мышечного тонуса достаточно рефлекторной деятельности спинного мозга, в этом случае импульсы к мышце поступают от альфа-мотонейронов спинного мозга.
Двигательные рефлексы, за которые ответственен спинной мозг, осуществляются без участия сознанная, однако связь спинного мозга с головным является необходимой. В процессе регуляции рефлекторной деятельности со стороны отделов головного мозга задействованы гамма-мотонейроны спинного мозга. Так, например, в результате поступления сигналов к гамма-мотонейронам от ретикулярной формации усиливается поток импульсов от проприорецепторов к альфа-мотонейронам спинного мозга.
В спинном мозге расположены:
− центр диафрагмального нерва (3 − 4 шейные сегменты);
− центры мускулатуры верхних конечностей (5 − 8 шейные сегменты);
− центры мускулатуры груди, живота и спины (сегменты грудного отдела);
− центры мускулатуры нижних конечностей (поясничное утолщение);
− вегетативные центры (сегменты грудопоясничного и крестцового отделов).
Выделяют следующие виды рефлексов спинного мозга (спинальных рефлексов):
1. Сухожильные рефлексы. Данные рефлексы возникают после нанесения удара молоточком по сухожилию, в результате чего мышца, прикрепленная к данному сухожилию, растягивается, в проприорецепторах возникает импульс (потенциал действия), который идет к спинному мозгу, от него – к мышце, вызывая ее сокращение. В клинической практике используются такие сухожильные рефлексы, как коленный рефлекс, ахиллов рефлекс, локтевой рефлекс; при этом клиническое значение имеет разница между силой рефлекса с правой и левой стороны тела. От слова «tendon» – сухожилие, данные рефлексы называют Т-рефлексами. Если на афферентные волокна оказывать электрическое раздражение, то будет наблюдаться Н-рефлекс (по имени Р. Hoffmann).
2. Рефлексы растяжения. В случае быстрого растяжения мышцы, происходит ее сокращение (фазические рефлексы, примером являются сухожильные рефлексы). В случае медленного растяжения мышцы ее длина не изменяется (тонические рефлексы), что необходимо для поддержания равновесия тела в пространстве, так как мышца в этом случае сопротивляется растягивающей ее силе.
3. Рефлексы сгибания и разгибания. Рефлексы сгибания верхних и нижних конечностей наблюдаются после болевого раздражения последних. При этом на противоположной стороне тела часто происходит разгибание конечности. Данное явление связано с тем, что при активации мотонейронов мышц-сгибателей, через контрлатерали аксонов вставочных нейронов на противоположной стороне спинного мозга происходит активация мотонейронов мышц-разгибателей и торможение мотонейронов мышц-сгибателей. В некоторых случаях может иметь место одновременное возбуждение мотонейронов мышц-сгибателей и разгибателей.
4. Ритмические рефлексы. Наблюдаются при раздражении кожи (в случае, например, зуда), когда конечность совершает ритмические чесательные движения; при этом присходит чередование процессов сгибания и разгибание конечности. В данном случае сгибательный и разгибательный центры спинного мозга реципрокно тормозят друг друга. Ритмические рефлексы являются также основой шагательных рефлексов.
5. Рефлекс отталкивания от опоры (при ходьбе, беге).
6. Локомоция. Регуляция спинным мозгом координации движений, что является необходимым для перемещения тела в пространстве. В данном случае спинномозговые рефлекторые центры находятся под контролем ядерных образования ствола мозга, мозжечка, двигательной зоны коры больших полушарий вследствие влияния импульсов, поступающих от экстеро- и проприорецепторов.
При перерезке спинного мозга, в результате чего нарушается связь спинного и головного мозга, такие рефлексы, как защитные, сгибания и разгибания конечностей, сужения сосудов в ослабленном виде сохраняются.
Роль структур головного мозга в регуляции движений и мышечного
Тонуса
Ретикулярная формация среднего мозга может оказывать активирующее влияние на мышечный тонус. Тонус мышц – длительное напряжение мышцы, вызванное регулирующими влияниями нервной системы Под влиянием ретикулярной формации может повышаться чувствительность проприорецепторов, в результате чего усиливается поток импульсов от рецепторов к спинному мозгу и далее к мышце, и мышечный тонус возрастает.
Продолговатый мозг, наоборот, оказывает тормозящее влияние на тонус мышц. Причем, действие, как ретикулярной формации, так и ствола мозга в данном случае является неспецифическим, то есть распространяется на различные мышцы. Специфическое влияние различных отделов ЦНС заключается в их действии на отдельные группы мышц. В частности, кора больших полушарий через красные ядра среднего мозга (кортикоруброспинальный тракт), ретикулярную формацию (ретикулоспинальный тракт), а также непосредственно через спинной мозг (корково-спинномозговой или кортикоспинальный тракт) усиливает тонус мышц-сгибателей, а продолговатый мозг посредством вестибулоспинального тракта усиливает тонус мышц-разгибателей.
Ретикулярная формация может оказывать тормозящее и активирующее влияние на осуществление ритмических рефлексов спинного мозга.
Средний и продолговатый мозг, мост играют важную роль в осуществлении статических и статокинетических рефлексов.
Выделяют два типа статических рефлексов: позные (сохраняется поза) и рефлексы выпрямления (например, при переходе из состояния лежа или сидя в состояние стоя). К статическим рефлексам относятся: лабиринтные рефлексы (возникают при изменениях положения головы в пространстве, импульсы поступают от рецепторов вестибулярного анализатора); шейные (возникают при изменениях положения головы относительно туловища, импульсы поступают от проприорецепторов шеи); выпрямительные (импульсы поступают от рецепторов кожи, вестибулярного и зрительного анализаторов). Статокинетические рефлексы помогают сохранить равновесие при действии на организм ускорения (линейный и лифтный рефлексы), а также при повороте головы, туловища в сторону, противоположную движению (вращательный рефлекс).
Голубое пятно, располагающееся на уровне моста, угнетает рефлексы спинного мозга и мышечный тонус в фазу быстрого сна.
Бледное ядро оказывает тормозящее влияние на мышечный тонус, а полосатое тело снимает это влияние.
Средний мозг участвует в регуляции примитивных движений (без ориентации в пространстве). Верхнее и нижнее двухолмия среднего мозга ответственны за ориентировочные рефлексы на свет и на звук. Красные ядра среднего мозга участвуют в регуляции всех видов движений, так как связаны со спинным мозгом, мозжечком, подкорковыми ядрами, корой больших полушарий. Получая команды от вышележащих центров, красные ядра направляют импульсы по руброспинальному тракту к спинному мозгу и, таким образом, регулируют мышечный тонус. Черная субстанция среднего мозга способствует осуществлению мелких точных действий (например, работа хирурга, часовщика), а также глотательных, жевательных, мимических движений.
Автоматизирование движений и их содружественность находятся под контролем базальных ганглиев (ядер). Бледное ядро оказывает влияние на функционирование заднего и среднего мозга, в частности, как предполагают, оказывает тормозящее влияние на красные ядра среднего мозга.
В свою очередь полосатое тело (хвостатое ядро), получая сигналы от таламуса, тормозит рефлекторную деятельность бледного ядра (при недостатке дофамина в хвостатом ядре бледный шар растормаживается, наблюдаются двигательные нарушения), а также оказывает тормозящее влияние на кору больших полушарий. Из хвостатого ядра импульсы поступают в бледный шар и скорлупу, а далее в таламус и чувствительную зону коры больших полушарий, откуда снова направляются к хвостатому ядру. Считается, что базальные ганглии являются высшим эфферентным центром ствола головного мозга и регулируют двигательные безусловные рефлексы, а также вегетативные реакции, сопровождающие данные рефлексы. Предполагается также, что базальные ганглии получают информацию от ассоциативных зон коры больших полушарий, данная информация передается в таламус, куда также поступают сигналы от мозжечка. Собранная информация направляется к двигательной зоне коры больших полушарий, где формируется программа действия (целенаправленного движения), далее импульсы поступают в нижележащие отделы ЦНС, ответственные за выполнение движения.
Мозжечок участвует в поддержание мышечного тонуса: через красные ядра среднего мозга он активирует тонус мышц-сгибателей, а через вестибулярные ядра продолговатого мозга – тонус мышц-разгибателей. Основную роль в поддержании мышечного тонуса, позы и равновесия тела играет кора червя.
Кора мозжечка (рис. 2)имеет складчатое строение, здесь выделяют доли, каждая из которых, в свою очередь, делится дольки, состоящие из извилин-лепестков (рис. 2, б). В коре выделяют три слоя: молекулярный (наружный), слой клеток Пуркинье и зернистый (внутренний) (рис. 2, в).
Афферентные импульсы от проприорецепторов, кожных рецепторов поступают в кору мозжечка по лазающим и моховидным волокнам. По лазающим волокнам импульсы идут от спинного мозга, через оливы продолговатого мозга к клеткам Пуркинье. Моховидные (мшистые) волокна от ядер моста подходят к гранулярным клеткам зернистого слоя (выход импульсов отсюда зависит от деятельности клеток Гольджи), далее направляются к клеткам Пуркинье и в молекулярный слой, где образуют синаптические контакты с корзинчатыми и звездчатыми клетками, аксоны которых направляются к клеткам Пуркинье. Таким образом, последние являются эфферентным выходом коры мозжечка и оказывают тормозящее влияние на ядра мозжечка, которые регулируют активность двигательных центров спинного, продолговатого, среднего и промежуточного мозга.
От подкорковых ядер мозжечка (зубчатого, пробковидного, шаровидного и ядра шатра) (рис. 2, а) импульсы направляются к мотонейронам спинного мозга через ядро Дейтерса продолговатого мозга и ретикулярную формацию. На уровне коры мозжечка осуществляется программирование движений, их согласование. Роль мозжечка в регуляции двигательной активности заключается в правильном перемещении тела в пространстве, в точном выполнении движений в соответствии с командами, поступающими из коры больших полушарий.
а – мозжечок (вид сзади), ядра мозжечка, расположенные под корой в белом веществе; б – дольки мозжечка; в – строение коры мозжечка; 1 – молекулярный слой, 2 – слой клеток Пуркинье, 3 – зернистый слой
При поражении мозжечка у человека наблюдаются следующие явления:
– атония (от греч. tonos – напряжение) – снижение мышечного тонуса;
– астения (от греч. astheneia – бессилие) – снижение мышечной силы;
– атаксия ( от греч. ataxia – беспорядок ) – невозможность соотносить выполняемые движения с поставленной целью, нарушение координации и точности движений;
– астазия (от греч. stasis – стояние) – колебательные движения, неспособность стоять;
– дистония – непроизвольное нарушение мышечного тонуса;
– тремор – дрожание частей тела;
– дисметрия – нарушение амплитуды движений (недостаточность или избыточность);
– дизартрия – нарушение моторики речи;
– дизэквилибрия – нарушение равновесия при закрытых глазах.
При участии коры больших полушарий осуществляется высший уровень регуляции мышечного тонуса, важное значение, в данном случае, имеют пирамидные нейроны положения. Большая часть моторной зоны – представительство кистей рук, лица, губ, языка, меньшая часть – представительство туловища и нижних конечностей (рис. 3). Верхние отделы моторной коры отвечают за движение нижних конечностей, а нижние – верхних конечностей. От моторной (двигательной) зоны коры импульсы поступают к базальным ганглиям, стволовой части головного мозга, спинному мозгу и далее к отдельным мышцам.
Рис. 3. Представительство различных
частей тела в прецентральной извилине коры
Взаимосвязь отделов ЦНС, участвующих в осуществлении движений, представлена на рис. 4. Первичная моторная зона коры (4 поле Бродмана, прецентральная извилина) осуществляет непосредственную регуляцию тонуса двигательных центров ствола головного мозга и спинного мозга на основе информации, поступившей из соматосенсорной зоны. Во вторичную моторную кору (6 поле Бродмана) импульсы приходят из ассоциативных зон коры; на основе поступившей информации во вторичной коре формируется программа выполнения движений, которая направляется в первичную кору, то есть первичная кора подчиняется вторичной. От премоторной зоны импульсы направляются к базальным ганглиям, к красным ядрам и черной субстанции среднего мозга, к продолговатому мозгу и ретикулярной формации и далее по рубро-, ретикуло- и вестибулоспинальным трактам – к спинному мозгу.
Рис. 4. Взаимосвязь отделов ЦНС, участвующих
в осуществлении движений (http://www.ido.rudn.ru)
Посредством данных импульсов регулируется двигательная активность скелетных мышц, дыхательной мускулатуры, плавность ритмических движений, осуществляется объединение отдельных движений в двигательный акт.
Нижнетеменные области коры способствуют точной адресации команд к определенным мышцам. Переднелобные зоны участвуют в программировании и регуляции произвольных движений. Зоны коры, относящиеся к лимбической системе, обеспечивают эмоциональную окраску движений.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Студопедия рекомендует:
Кристаллическая структура металлов Изучение металлов в соответствии с периодической системой элементов Менделеева показывает.
Гражданская процессуальная правоспособность и дееспособность Стороны характеризуются юридическими свойствами правоспособности и дееспособности.
Конституционные основы местного самоуправления в Российской Федерации Местное самоуправление как выражение власти народа составляет одну из основ конституционного строя РФ.
Понятие о группе в психологии, классификация групп Группа – ограниченная в размерах общность людей, выделяемая из социального целого на основе определённых признаков.
Центральные и периферические органы иммунной системы и их функции Глава 18 ИММУННАЯ СИСТЕМА ОРГАНИЗМА Функциональная анатомия органов иммунной системы Общая характеристика органов иммунной.
Источник: studopedia.ru
Глава 15. Центральные механизмы регуляции движений
Любое взаимодействие человека с окружающей средой, любое действие связано с движением или включает в себя движение. Взгляд, улыбка, жест, ходьба, физические упражнения, письмо и речь — все это движения. Просто стоять, поддерживая определенную позу, — значит тоже совершать определенные движения.
Вполне справедливо мнение известного российского физиолога И.М.Сеченова: «. Все бесконечное разнообразие внешних проявлений мозговой деятельности сводится окончательно к одному лишь явлению — мышечному движению. Вне зависимости от того, нужно ли вам почесать нос, выполнить сложнейшее танцевальное «па» или поставить свою подпись, в реализацию движения включаются разные звенья нервной системы от коры мозга до двигательных нервов, приводящих в действие мышцы нашего тела»[1].
Согласно современным представлениям, организация (подготовка) и управление движениями человека осуществляются многоуровневой, иерархически (соподчиненно) организованной системой, включающей различные отделы центральной нервной системы.
Непроизвольные и произвольные движения
Существует разделение движений на непроизвольные (бессознательные) и произвольные (осознанные). С одной стороны, это разделение весьма условно, так как существует большой класс движений, которые в зависимости от ситуации будут бессознательными или осознанными. Например, дыхание — это комплекс движений грудной клетки и ряда мышц плечевого пояса, осуществляющийся неосознанно даже при самом глубоком сне и в состоянии наркоза, но дыхательные движения, осуществляемые этими мышцами при пении, вряд ли можно считать неосознанными (это специальные дыхательные движения, которые формируются в процессе обучения пению). Или другой пример — сосательные движения младенца с первых минут жизни явно непроизвольны, но те же движения, которые выполняет человек при отсасывании яда после укуса змеи, — точно, осознанны и произвольны. По-видимому, более корректно говорить о более или менее осознанных движениях.
Краткую и точную характеристику произвольных движений дал известных исследователь Рагнар Гранит: «Произвольным в произвольном движении является его цель». Произвольные движения — самые сложные по своей структуре. Их реализация невозможна без участия высших двигательных центров. Все движения, которые ребенок осваивает в своей жизни, которым его обучают, — это произвольные движения. Учится ли он ходить или бегать, складывает ли кубики или завязывает шнурки, выводит первые буквы или застегивает пуговицы — все это целенаправленные движения, осуществление которых подчинено достижению «полезного результата действия».
Общий план организации двигательной системы можно представить в виде схемы (рис. 65). Это очень упрощенная схема, ибо путь от коры к мотонейронам (от центра к периферии) на каждом участке (этапе) имеет свою сложную структуру взаимоотношений, параллельные пути обработки и передачи информации, и особую структуру взаимодействия между чувствительными и двигательными системами.
Эффективное осуществление движений невозможно без постоянного поступления разных видов сенсорной информации (соматосенсорной и вестибулярной, зрительной и слуховой). В то же время для получения сенсорной информации необходимы движения. Видимо, поэтому для описания ряда двигательных актов используется термин «сенсомоторный», хотя нельзя исключить сенсорную информацию из общей схемы организации движений.
Рис. 65. Общая схема организации двигательной системы. Важнейшие структуры системы и их взаимосвязи
Рассмотрим роль каждого из отделов нервной системы в организации движений.
Высшие двигательные центры
Высшие двигательные центры — это структуры мозга, расположенные выше спинного мозга и участвующие в регуляции движений.
Подкорковые и корковые мотивационные зоны, включая ассоциативные области коры, формируют побуждение к действию или «принятие решения о действии». По Н.А. Бернштейну, «. задача действия, иными словами, результат, которого организм стремится достигнуть, есть нечто такое, что должно стать, но чего еще нет.
Таким образом, задача действия есть закодированное в мозгу отображение или модель потребного будущего. Еще точнее будет сказать, что реакцией организма и его верховных управляющих систем на ситуацию является не действие, а принятие решения о действии» [2]. Представление Н.А.Бернштейна созвучно концепции функциональной системы П.К.Анохина.
В общей многоуровневой (подкорковые и корковые зоны) системе принятия решения (реализации мотивации) принимают участие гипоталамус и другие лимбические системы, а также фронтальные, ассоциативные зоны коры, т.е. структуры, обеспечивающие афферентный синтез, принятие решения и выработку программы действия. Этот уровень фактически определяет, «что делать», и во многом от того, как сформирована задача действия, зависит результат — качество выполнения движения.
Например, если мы даем ребенку задание написать букву, то в разном возрасте, при разной сформированности «задачи действия» он будет писать букву по-разному, как умеет, — печатную или письменную, каллиграфически правильно или кое-как.
О том, как преобразуются наши мысли и желания в разряды кортикальных нейронов, можно пока только догадываться. Однако методы нейрофизиологических исследований позволяют зарегистрировать изменения электрической активности отдельных зон коры мозга в ситуации, предшествующей движению. Причем при несформированном или новом виде движений в процесс подготовки (при определении «задачи действия») включены практически все зоны коры, а при сформированном, отработанном движении, как правило, фронтальные зоны, с деятельностью которых и связывается программирование движений.
Роль двигательных областей коры, базальных ганглиев и таламуса в организации движений
Важнейшей двигательной областью коры является прецентральная извилина (рис. 66, а). Ее функции были изучены путем раздражения обнаженной поверхности мозга и анализа параличей у больных инсультами.
В 50-х годах XX в. американским ученым В.Пенфилдом были обнаружены интересные закономерности: во-первых, двигательная кора организована по соматотоническому принципу, т. е. каждый ее участок связан с определенной частью тела, во-вторых, области двигательной коры тех частей тела, которые осуществляют более разнообразные функции, больше по площади. Наиболее обширными, учитывая пропорции тела, являются зоны, управляющие мышцами кисти руки и мимическими мышцами (см. рис.
66, b). Двигательные и чувствительные зоны коры примыкают друг к другу (см. рис. 66, а) и «чувствительный гомункулюс» почти повторяет карту двигательных зон (см. рис. 66, с). Этот рисунок иногда называют «двигательным гомункулюсом».
Предполагается, что определенные типы движений, в которые вовлечены отдельные мышцы, представлены в различных участках двигательной области, причем размеры каждого участка зависят от сложности контролируемых им движений. Например, для участия в речевой функции двигательный центр мозга не только посылает команды к мышцам языка и гортани, но и хранит в памяти последовательность этих команд.
Это объясняет, почему рост и развитие полей двигательной области начинаются в раннем детстве и продолжаются вплоть до зрелого возраста. Стимуляция двигательной коры вызывает лишь сокращение отдельных мышц или движение в суставах. Сложные целенаправленные двигательные акты так «запустить» невозможно. По-видимому, двигательная кора является той частью общей структуры регуляции движений, где замысел движения преобразуется в его программу. Фактически двигательная кора — первый компонент структуры регуляции движений, с которого начинается выполнение движения.
Рис. 66. Карта двигательных (b) и сенсорных (с) зон коры головного
Нейроны коры, непосредственно связанные с мотонейронами спинного мозга, называются клетками Беца (по имени впервые описавшего их русского анатома XIX в.). Они лежат в глубине двигательной коры и относятся к самым крупным пирамидным нейронам головного мозга. Их аксоны сходятся в толстый пучок нервных волокон, называемый пирамидным трактом. Дойдя до спинного мозга, аксоны клеток Беца перекрещиваются: пучок, идущий от правого полушария, переходит на левую сторону и наоборот. Вот почему регуляция движений левой половины тела контролируется правым (контрлатеральным — противоположным) полушарием, а правой стороны — левым.
Двигательная область коры большого мозга является областью, воспринимающей, анализирующей и синтезирующей раздражения, идущие от скелетно-мышечной системы человека, и участвующей в межанализаторной интеграции. Относительно раннее формирование двигательной коры в онтогенезе, очевидно, определяется ее функциональной значимостью в обеспечении адекватного поведения детей. Двигательная зона коры обеспечивает осуществление произвольных движений, интегрируя деятельность различных анализаторов всей коры мозга и деятельность всего мозга, благодаря чему осуществляется срочная перестройка путей и форм контактов организма с окружающей средой.
Определенная морфофункциональная зрелость двигательной области коры головного мозга, необходимая для поддержания процессов регуляции движений, отмечается у новорожденных уже с первых дней жизни.
Кроме двигательной области коры головного мозга, в регуляции движений участвуют базальные ганглии, таламус, мозжечок и ствол головного мозга.
Базальные ганглии (скопления нервных клеток, находящихся у основания больших полушарий, формирующиеся на ранних стадиях развития мозга, представляют собой важное подкорковое связующее звено между ассоциативными и двигательными зонами мозга. Базальные ганглии — это четыре образования: полосатое тело (стриатум), бледный шар (паллидум), субталамическое ядро и черная субстанция. Базальные ганглии получают все виды сенсорной информации, и, по-видимому, их функция заключается в «запуске» движений определенного типа — медленных целенаправленных движений конечностей в пространстве. Считается, что на уровне базальных ганглиев имеется готовый набор программ, которые используются в сложных двигательных действиях.
В таламус (структура промежуточного мозга) поступает вся соматосенсорная информация, необходимая для построения любой последовательности движений, и через таламус проходят сигналы от базальных ганглиев и мозжечка к коре.
Мозжечок, имеющий сложную структуру, играет особую роль в нервной регуляции движений, мышечного тонуса и позы.
Следует отметить, что все области коры больших полушарий, в том числе и двигательные, а также другие отделы мозга посылают информацию к мозжечку, к нему же через ассоциативные зоны коры поступают сигналы от периферических органов.
Основное значение мозжечка — дополнение и коррекция деятельности остальных звеньев системы регуляции движений. Экспериментальные данные позволяют выделить следующие функции мозжечка в осуществлении движений: регуляцию позы и мышечного тонуса, коррекцию медленных целенаправленных движений, выполнение последовательности быстрых целенаправленных движений.
В процессе осуществления движений и мозжечок, и базальные ганглии посылают сигналы к двигательной коре через таламус. Обе эти структуры участвуют в выработке программы движений. Таким образом, все эти структуры мозга — двигательная кора, базальные ганглии, таламус и мозжечок исполняют функцию формирования программы целенаправленных движений.
Ствол головного мозга — образование головного мозга, через которое проходят нисходящие пути к спинному мозгу. Эти пути условно можно разделить на два вида — возбуждающие действия мышц сгибателей и возбуждающие действия мышц-разгибателей. Они оканчиваются в разных областях спинного мозга. Через ствол мозга проходят и восходящие пути, связывающие между собой структуры ЦНС, которые осуществляют регуляцию движений. Структуры ствола мозга играют важную роль в регуляции позы, обеспечивающей эффективную реализацию движений (позные компоненты двигательной активности).
Спинной мозг — наиболее древнее образование нервной системы, включенное в структуру регуляции движений.
Нейроны спинного мозга образуют серое вещество, которое имеет на срезе вид буквы «Н». Передние и задние части серого вещества называются передними и задними рогами.
В передних рогах находятся двигательные нейроны, аксоны которых подходят к мышцам. В нейронах передних рогов заканчиваются нисходящие пути центральной нервной системы, регулирующие движения. Двигательный нейрон (мотонейрон) и его аксон вместе с мышечными волокнами, которые он контролирует, называют двигательной единицей (ДЕ).
Один мотонейрон с помощью разветвлений своего аксона способен контролировать много мышечных волокон. Число волокон, управляемых одним мотонейроном, варьирует в зависимости от того, насколько тонкими должны быть движения мышцы. Например, в глазодвигательных мышцах на каждый нейрон приходится примерно по три мышечных волокна; в мышцах, приводящих в движение бедро, на один нейрон приходится сотня мышечных волокон.
Сила, которую может развить мышца, зависит от числа содержащихся в ней мышечных волокон. У мотонейронов, контролирующих крупные мышцы, такие как бицепсы или мышцы голени, аксоны имеют много разветвлений, для того чтобы передавать импульсы на мышечные волокна, причем веточки аксонов в этом случае гораздо толще, чем у нейронов, управляющих мелкими мышцами пальцев.
В задних рогах находятся нейроны, которые выполняют сенсорные функции и передают сигналы в вышележащие центры, в симметричные структуры противоположной стороны или к передним рогам спинного мозга.
Белое вещество спинного мозга состоит из миелиновых волокон, собранных в пучки. Эти волокна могут быть короткими (связывают нейроны разных сегментов или симметричные нейроны противоположных сторон спинного мозга) или длинными (восходящие — к головному мозгу и нисходящие — от головного мозга к спинному).
В каждой мышце есть чувствительные сенсорные нервы, по которым передается проприоцептивная информация — информация о положении и движении собственного тела, о напряжении мышцы, о положении сустава, от которых передается информация к чувствительным нервам. Специальные датчики —рецепторы — находятся либо в глубине мышцы, либо в сухожилиях — местах прикрепления мышцы к кости. Эта информация передается либо в спинной мозг, либо в вышележащие нервные центры.
Рис. 67. Коленный рефлекс
Спинальные рефлексы. Особый интерес представляет собственно рефлекторная деятельность спинного мозга (так называемые спинальные рефлексы) — относительно простые виды реакции, которые осуществляются на уровне спинного мозга без участия вышележащих структур.
Рассмотрим некоторые рефлексы спинного мозга на примере коленного рефлекса (рис. 67) и рефлекса болевого раздражения при уколе пальца иглой (кнопкой) (рис. 68).
В первом случае при ударе молоточком по сухожилию ниже коленной чашки растягивается расположенное выше сухожилие, прикрепленное непосредственно к четырехглавой мышце бедра. В результате активируются находящиеся в этом сухожилии рецепторы, которые по сенсорным волокнам передают возбуждение спинальным мотонейронам, и последние заставляют мышцы бедра сократиться, а ногу — подпрыгнуть. Весь рефлекс совершается очень быстро, обычно меньше чем за секунду.
Другие локальные реакции, которые осуществляются на уровне спинного мозга, связаны, например, с болевыми раздражителями.
При ударе током или случайном уколе рука отдергивается еще до того, как ощущается боль. В этом случае по чувствительным нервам информация передается в спинной мозг, а по двигательным нервам мгновенно передается сигнал к мышцам.
Внутренние системы спинного мозга осуществляют координацию работы мышц сгибателей и разгибателей, позволяя уравновешивать движения рук, ног, тела при выполнении различных по сложности движений.
Рис. 68. Рефлекс болевого раздражения
И все-таки при выполнении большинства движений мышцы сокращаются, т.е. движение реализуется, только если мы этого хотим, если это «не ответ на внешнее раздражение, а решение задачи» (Н.А.Бернштейн). При регуляции произвольных движений в двигательной системе осуществляется последовательная переработка нервных сигналов — от инициации движения моторной корой до сокращения мышц, контролирующих положение и стабильность суставов, по командам спинальных мотонейронов. Параллельные модифицирующие системы мозжечка, базальных ганглиев ствола мозга обеспечивают координированное и гладкое выполнение двигательной программы, поддержание необходимой позы, эффективность решения двигательной задачи.
Источник: cyberpedia.su
Конечный мозг и базальные ганглии
Рис. 1. Важнейшие афферентные и эфферентные связи базальных ганглиев: 1 паравентрикулярное ядро; 2 вентролатеральное ядро; 3 срединные ядра таламуса; СЯ — субталамическое ядро; 4 — кортикоспинальный тракт; 5 — кортикомостовой тракт; 6 — эфферентный путь от бледного шара к среднему мозгу
Из клинических наблюдений давно известно, что одним из последствий заболеваний базальных ганглиев является нарушение тонуса мышц и движений. На этом основании можно было бы предполагать, что базальные ганглии должны быть связаны с моторными центрами ствола и спинного мозга. Современными методами исследования показано, что аксоны их нейронов не следуют в нисходящем направлении к моторным ядрам ствола и спинного мозга, а повреждение ганглиев не сопровождается парезами мышц, как это имеет место при повреждении других нисходящих моторных путей. Большая часть эфферентных волокон базальных ганглиев следует в восходящем направлении к моторным и другим областям коры больших полушарий мозга.
Афферентные связи
Структурой базальных ганглиев, к нейронам которой поступает большая часть афферентных сигналов, является полосатое тело. Его нейроны получают сигналы из коры больших полушарий мозга, ядер таламуса, клеточных групп черной субстанции промежуточного мозга, содержащих дофамин, и от нейронов ядра шва, содержащих серотонин. При этом нейроны скорлупы полосатого тела получают сигналы преимущественно из первичной соматосенсорной и первичной моторной коры, а нейроны хвостатого ядра (уже предварительно интегрированные полисенсорные сигналы) из нейронов ассоциативных областей коры больших полушарий мозга. Анализ афферентных связей базальных ядер с другими структурами мозга предполагает, что от них в ганглии поступает не только информация, связанная с движениями, но и информация, которая может отражать состояние общей активности мозга и быть связана с его высшими, познавательными функциями и эмоциями.
Полученные сигналы подвергаются в базальных ганглиях сложной обработке, в которой участвуют его различные структуры, связанные между собой многочисленными внутренними связями и содержащие различные типы нейронов. Среди этих нейронов большинство составляют ГАМК-ергические нейроны полосатого тела, которые посылают аксоны к нейронам бледного шара и черной субстанции. Эти нейроны продуцируют также динорфин и энкефалин. Большой удельный вес в передаче и обработке сигналов внутри базальных ганглиев занимают его возбуждающие холинергические интернейроны с широко ветвящимися дендритами. К этим нейронам конвергируют аксоны нейронов черной субстанции, секретирующие дофамин.
Эфферентные связи базальных ганглиев используются для посылки сигналов, обработанных в ганглиях, в другие структуры мозга. Нейроны, формирующие основные эфферентные пути базальных ганглиев, располагаются главным образом в наружном и внутреннем сегментах бледного шара и в черной субстанции, получающих афферентные сигналы в основном из полосатого тела. Часть эфферентных волокон бледного шара следует в интраламинарные ядра таламуса и оттуда — в полосатое тело, образуя подкорковую нейронную сеть. Большая часть аксонов эфферентных нейронов внутреннего сегмента бледного шара следует через внутреннюю капсулу к нейронам вентральных ядер таламуса, а от них — в префронтальную и дополнительную моторную кору больших полушарий. Через связи с моторными областями коры мозга базальные ганглии оказывают влияние на контроль движений, осуществляемый корой через кортикоспинальный и другие нисходящие двигательные пути.
Хвостатое ядро получает афферентные сигналы с ассоциативных областей коры мозга и, обработав их, посылает эфферентные сигналы преимущественно в префронтальную кору. Предполагается, что эти связи являются основой для участия базальных ганглиев в решении задач, связанных с подготовкой и исполнением движений. Так, при повреждении хвостатого ядра у обезьян нарушается способность выполнять движения, требующие сведений из аппарата пространственной памяти (например, учета, где расположен предмет).
Базальные ганглии связаны эфферентными связями с ретикулярной формацией промежуточного мозга, через которые участвуют в контроле ходьбы, а также с нейронами верхних холмиков, через которые они могут контролировать движения глаз и головы.
С учетом афферентных и эфферентных связей базальных ганглиев с корой и другими структурами мозга выделяют несколько нейронных сетей или петель, проходящих через ганглии или заканчивающихся внутри их. Моторная петля образована нейронами первичной моторной, первичной сенсомоторной и дополнительной моторной коры, чьи аксоны следуют к нейронам скорлупы и затем через бледный шар и таламус достигают нейронов дополнительной моторной коры.
Глазодвигательная петля образована нейронами моторных полей 8, 6 и сенсорного поля 7, аксоны которых следуют в хвостатое ядро и далее к нейронам лобного глазного поля 8. Префронтальные петли образованы нейронами префронтальной коры, аксоны которых следуют к нейронам хвостатого ядра, черного тела, бледного шара и вентральных ядер таламуса и затем достигают нейронов прсфронтальной коры. Каемчатая петля образована нейронами круговой извилины, орбитофронтальной коры, некоторых областей височной коры, тесно связанных со структурами лимбической системы. Аксоны этих нейронов следуют к нейронам вентральной части полосатого тела, бледного шара, медиодорсального таламуса и далее — к нейронам тех областей коры, в которых петля начиналась. Как можно видеть, каждая петля формируется множественными корковостриарными связями, которые после их прохождения через базальные ганглии следуют через ограниченную область таламуса в определенную одиночную область коры.
Области коры, посылающие сигналы в ту или иную петлю, функционально связаны друг с другом.
Функции базальных ганглиев
Нейронные петли базальных ганглиев являются морфологической основой выполняемых ими основных функций. Среди них — участие базальных ганглиев в подготовке и осуществлении движений. Особенности участия базальных ганглиев в выполнении этой функции вытекают из наблюдений за характером нарушения движений при заболеваниях ганглиев. Предполагается, что базальные ганглии играют важную роль в планировании, программировании и выполнении сложных движений, инициируемых корой больших полушарий.
С их участием абстрактный замысел движения превращается в моторную программу сложных произвольных действий. Их примером могут быть такие действия, как одновременное осуществление нескольких движений в отдельных суставах. Действительно, при регистрации биоэлектрической активности нейронов базальных ганглиев во время выполнения произвольных движений отмечается се повышение в нейронах субталамических ядер, ограды, внутреннего сегмента бледного шара и ретикулярной части черного тела.
Повышение активности нейронов базальных ганглиев инициируется притоком возбуждающих сигналов к нейронам полосатого тела из коры больших полушарий, опосредованных высвобождением глутамата. К этим же нейронам поступает поток сигналов из черной субстанции, оказывающий на нейроны полосатого тела притормаживающее действие (через высвобождение ГАМК) и способствующий фокусированию влияния нейронов коры на определенные группы нейронов полосатого тела. В это же время к его нейронам поступают афферентные сигналы из таламуса с информацией о состоянии активности других областей мозга, имеющих отношение к организации движений.
Нейроны полосатого тела интегрируют все эти потоки информации и передают ее нейронам бледного шара и ретикулярной части черной субстанции и далее но эфферентным путям эти сигналы передаются через таламус в моторные области коры мозга, в которых осуществляется подготовка и инициирование предстоящего движения. Предполагается, что базальные ганглии еще на этапе подготовки движения осуществляют выбор типа движения, необходимого для достижения поставленной цели, отбор мышечных групп, необходимых для его эффективного выполнения. Вероятно, базальные ганглии участвуют в процессах моторного обучения путем повторения движений, причем их роль заключается в выборе оптимальных путей осуществления сложных движений для достижения желаемого результата. С участием базальных ганглиев достигается устранение избыточности движений.
Еще одной из моторных функций базальных ганглиев является участие в осуществлении автоматических движений или моторных навыков. Когда базальные ганглии повреждены, человек выполняет их в более замедленном темпе, менее автоматизировано, с меньшей точностью. Двустороннее разрушение или повреждение ограды и бледного шара у человека сопровождается возникновением навязчиво-принудительного двигательного поведения и появлением элементарных стереотипных движений. Двустороннее повреждение или удаление бледного шара ведет к снижению двигательной активности и гипокинезии, в то время как одностороннее повреждение этого ядра или не влияет, или слабо сказывается на двигательных функциях.
Поражение базальных ганглиев
Патология в области базальных ганглиев у человека сопровождается появлением непроизвольных и нарушением произвольных движений, а также нарушением распределения тонуса мышц и позы. Непроизвольные движения проявляются обычно при спокойном бодрствовании и исчезают во время сна. Различают две большие группы нарушения движений: с доминированием гипокинезии — брадикинезии, акинезии и ригидности, которые наиболее выражены при паркинсонизме; с доминированием гиперкинезии, которая наиболее характерна для хореи Хантингтона.
Гиперкинетические моторные нарушения могут проявляться тремором покоя — непроизвольными ритмическими сокращениями мышц дистальных и проксимальных отделов конечностей, головы и других частей тела. В других случаях они могут проявляться хореей — внезапными, быстрыми, насильственными движениями мышц туловища, конечностей, лица (гримасы), появляющимися вследствие дегенерации нейронов хвостатого ядра, голубоватого пятна и других структур. В хвостатом ядре обнаружено снижение уровня нейромедиаторов — ГАМК, ацетилхолина и нейромодуляторов — энкефалина, вещества Р, динорфина и холецистокинина. Одним из проявлений хореи является атетоз — медленные, продолжительные корчащие движения дистальных частей конечностей, обусловленных нарушением функции ограды.
В результате одностороннего (при кровоизлиянии) или двустороннего повреждения субталамических ядер может развиться баллизм, проявляющийся внезапными, насильственными, большой амплитуды и интенсивности, молотящими, стремительными движениями на противоположной (гемибаллизм) или обеих сторонах тела. Заболевания в области полосатого тела могут вести к развитию дистонии, которая проявляется насильственными, медленными, повторяющимися, скручивающими движениями мышц руки, шеи или торса. Примером локальной дистонии может быть непроизвольное сокращение мышц предплечья и кисти во время письма — писчий спазм. Заболевания в области базальных ганглиев могут вести к развитию тиков, характеризующихся внезапными, кратковременными насильственными движениями мышц различных частей тела.
Источник: www.grandars.ru