Одним из основных понятий программной инженерии является понятие жизненного цикла программного продукта и программного процесса.
Жизненный цикл – непрерывный процесс, начинающийся с момента принятия решения о создании ПО и заканчивающийся снятием его с эксплуатации. Жизненный цикл разбивается на отдельные процессы.
Процесс – совокупность действий и задач, имеющих целью достижение значимого результата. Основными процессами (иногда называют этапами или фазами) жизненного цикла являются:
● Разработка спецификации требований (результат – описания требований к программе, которые обязательны для выполнения – описание того, что программа должна делать)
● Разработка проекта программы (результат – описание того, как программа будет работать)
● Кодирование (результат – исходный код и файлы конфигурации)
● Тестирование программы (результат — контроль соответствия программы требованиям)
● Документирование (результат – документация к программе)
Кроме основных, существует много дополнительных и вспомогательных процессов, связанных не созданием продукта, а с организацией работ (нефункциональные процессы): создание инфраструктуры, управление конфигурацией, управление качеством, обучение, разрешение противоречий, …
Просто о SDLC (Жизненный цикл разработки ПО)
Процесс должен быть установлен. Полное установление процесса предполагает:
● Описание процесса – детальное описание действий и операций процесса
● Обучение процессу – проведение занятий с персоналом по освоению процесса
● Введение метрик – установление количественных показателей хода выполнения
● Контроль выполнения – измерение метрических показателей и оценка хода выполнения
● Усовершенствование – изменение процесса при меняющихся условиях применения
Применение полных (тяжелых) процессов требует дополнительных ресурсов (зачастую существенных) и далеко не всегда окупается полученным результатом. Поэтому, выбор состава процессов, степени их установленности (полноты установленности) в каждом конкретном случае может быть сделан по-разному в соответствии с выбранной моделью процесса.
Модель программного процесса — это упрощенное описание программного процесса, представленное с некоторой точки зрения.
В соответствии с двумя типами процессов – основных и дополнительных — можно говорить о двух типах моделей процесса: модели процесса разработки (модели жизненного цикла) и модели организации работ по выполнению разработки.
К первым типам моделей (модели жизненного цикла) относятся модели, в которых описывается порядок выполнения действий по созданию продукта. К наиболее известным моделям относятся:
1 Водопадная (каскадная) модель – процесс разбивается но последовательное выполнение стадий; каждая стадия начинается после полного завершения предыдущей, продукт создается завершением последней стадии и должен полностью соответствовать изначально установленным требованиям.
2 Спиральная (циклическая) модель – процесс также разбивается на стадии, но стадии выполняются циклическим повторением. На первом цикле создается прототип продукта, выполняющий часть требований. Дальнейшие циклы связаны с наращиванием прототипа до полного удовлетворения требований.
Жизненный цикл разработки. SDLC (2020)
3 Компонентная модель предполагает сборку продукта из заранее написанных частей – компонент. Основной упор делается на интеграцию и совместное тестирование компонент.
4 Формальная модель основана на формальном описании требований с последующим преобразованием (трансляцией) требований в исходный код. Применение формальной модели гарантирует соответствие кода описанным требованиям.
Следует отметить, что различия между этими моделями существуют только в теории. На практике спиральная модель может быть дополнена элементами каскадной и компонентной. Задача программного инженера – подобрать правильную их комбинацию, ориентируясь только на конечный результат.
Ко второму типу моделей – моделей организации работ относятся:
1 Модель потока работ (workflow model) — показывает последовательность действий, выполняемых людьми на различных этапах разработки ПО. Для каждого действия указываются входы, выходы (результаты) и связи по входам и выходам.
2 Модель потоков данных (data flow model) — представляет процесс в виде последовательного преобразования данных. Каждое преобразование может выполняться одним или несколькими действиями.
3 Ролевая модель — показывает роли людей, участвующих в программном процессе, а также действия и результаты, за которые они отвечают.
Метод программной инженерии — это структурный подход к созданию ПО, который способствует производству высококачественного продукта эффективным в экономическом аспекте способом. В этом определении есть две основные составляющие: (а) создание высококачественного продукта и (б) экономически эффективным способом. Иными словами, метод – это то, что обеспечивает решение основной задачи программной инженерии: создание качественного продукта при заданных ресурсах времени, бюджета, оборудования, людей.
Начиная с 70-х годов создано достаточно много методов разработки ПО. Наиболее известны:
1 Метод структурного анализа и проектирования Том ДеМарко (1978),
2 Метод сущность-связь проектирования информационных систем Чен (1976)
3 Метод объектно-ориентированного анализа Буч (1994), Рамбо (1991).
Метод программной индустрии основан на идее создания моделей ПО с поэтапным преобразованием этих моделей в программу – окончательную модель решаемой задачи. Так, на этапе спецификаций создается модель – описание требований, которая далее преобразуется в модель проекта ПО, проект – в программный код. При этом важно, чтобы модели метода представлялись графически с помощью некоторого языка представления моделей.
Методы должны включать в себя следующие компоненты:
1 Описание моделей системы и нотация, используемая для описания этих моделей (например, объектные модели, конечно-автоматные модели и т.д.).
2 Правила и ограничения, которые надо выполнять при разработке моделей (например, каждай объект должен иметь одинаковое имя).
3 Рекомендации — эвристики, характеризующие хорошие приемы проектирования в данном методе (скажем, рекомендация о том, что ни у одного объекта не должно быть больше семи подобъектов).
4 Руководство по применению метода — описание последовательности работ (действий), которые надо выполнить для построения моделей (все атрибуты должны быть задокументированы до определения операций, связанных с этим объектом).
Нет идеальных методов, все они применимы только для тех или иных случаев. Нет абсолютных методов – применяемые на практике методы могут включать элементы различных подходов. Выбор метода составляет задачу специалиста по программной инженерии.
В соответствии со стандартом ISO 12207 процессы ЖЦ делятся на три группы:
Отдельно описан процесс адаптации стандарта, содержащий основные работы, которые должны быть выполнены при адаптации настоящего стандарта к условиям конкретного программного проекта.
К числу основных относятся процессы:
1 Заказа. Определяет работы заказчика, то есть организации, которая приобретает систему, программный продукт или программную услугу.
2 Поставки. Определяет работы поставщика, то есть организации, которая поставляет систему, программный продукт или программную услугу заказчику.
3 Разработки. Определяет работы разработчика, то есть организации, которая проектирует и разрабатывает программный продукт.
4 Эксплуатации. Определяет работы оператора, то есть организации, которая обеспечивает эксплуатационное обслуживание вычислительной системы в заданных условиях в интересах пользователей.
5 Сопровождения. Определяет работы персонала сопровождения, то есть организации, которая предоставляет услуги по сопровождению программного продукта, состоящие в контролируемом изменении программного продукта с целью сохранения его исходного состояния и функциональных возможностей. Данный процесс охватывает перенос и снятие с эксплуатации программного продукта.
Вспомогательными процессами являются:
1 Документирования. Определяет работы по описанию информации, выдаваемой в процессе жизненного цикла.
2 Управления конфигурацией. Определяет работы по управлению конфигурацией.
3 Обеспечения качества. Определяет работы по объективному обеспечению того, чтобы программные продукты и процессы соответствовали требованиям, установленным для них, и реализовывались в рамках утвержденных планов. Совместные анализы, аудиторские проверки, верификация и аттестация могут использоваться в качестве методов обеспечения качества.
4 Верификации. Определяет работы (заказчика, поставщика или независимой стороны) по верификации программных продуктов по мере реализации программного проекта.
5 Аттестации. Определяет работы (заказчика, поставщика или независимой стороны) по аттестации программных продуктов программного проекта.
6 Совместного анализа. Определяет работы по оценке состояния и результатов какой-либо работы. Данный процесс может использоваться двумя любыми сторонами, когда одна из сторон (проверяющая) проверяет другую сторону (проверяемую) на совместном совещании.
7 Аудита . Определяет работы по определению соответствия требованиям, планам и договору. Данный процесс может использоваться двумя сторонами, когда одна из сторон (проверяющая) контролирует программные продукты или работы другой стороны (проверяемой).
8 Решения проблем. Определяет процесс анализа и устранения проблем (включая несоответствия), независимо от их характера и источника, которые были обнаружены во время осуществления разработки, эксплуатации, сопровождения или других процессов.
Организационные процессы жизненного цикла:
1 Управления. Определяет основные работы по управлению, включая управление проектом, при реализации процессов жизненного цикла.
2 Создания инфраструктуры. Определяет основные работы по созданию основной структуры процесса жизненного цикла.
3 Усовершенствования. Определяет основные работы, которые организация (заказчика, поставщика, разработчика, оператора, персонала сопровождения или администратора другого процесса) выполняет при создании, оценке, контроле и усовершенствовании выбранных процессов жизненного цикла.
4 Обучения. Определяет работы по соответствующему обучению персонала.
Источник: lektsia.com
Жизненный цикл программных систем
Программы создаются, эксплуатируются и развиваются во времени. Как и любые искусственные системы, они имеют свой жизненный цикл.
Жизненный цикл (ЖЦ) – совокупность взаимосвязанных процессов создания и последовательного изменения состояния продукции от формирования к ней исходных требований до окончания ее эксплуатации или потребления.
Программы с малой длительностью жизненного цикла создаются для разового решения научных и иных задач. Их жизненный цикл — от нескольких дней до нескольких месяцев. Ранее такие программы не имели удобного интерфейса, так как затраты на его разработку еще недавно в несколько раз превосходили затраты на разработку вычислительной части. Жизненный цикл программных изделий показан на рис. 3.1.
Рис. 3.1. Жизненный цикл программных изделий
Каждая программа начинается с какой-либо неудовлетворенной потребности и, осознав ее, необходимо провести системный анализ для выявления целей будущего программного изделия и требований к нему. Следующим этапом будет внешнее специфицирование, предназначенное для создания «идеологии» программы – общей направленности в последующем проектировании, вплоть до внешнего вида программы и инструкции пользования программой.
На этапе проектирования программное изделие специфицируется в полном объеме от постановки задачи до рабочего проекта с описанием внутренней структуры программы и плана разработки частей программы. Затем происходит кодировка и тестирование, в результате чего выходит готовая версия программы. Программа выпускается в тираж и сопровождается производителем.
Сопровождение заключается как в устранении обнаруживаемых в процессе эксплуатации ошибок и выпуске исправленных версий, так и в усовершенствовании базовой версии программы, что зачастую приводит к перепроектированию программы и выпуску радикально обновленных версий. Окончание жизненного цикла обусловливается прекращением эксплуатации разработки. Однако идеи, выдвинутые в процессе эксплуатации программы, обычно используются при разработке последующего, более совершенного и современного изделия.
Прекращение эксплуатации — обычно не одномоментный акт уничтожения программы в компьютере, а период времени, когда некоторые организации или некоторые пользователи еще продолжают использовать старую разработку.
Модель жизненного цикла отражает различные состояния системы, начиная с момента возникновения необходимости в данной ПС и заканчивая моментом ее полного выхода из употребления. Модель жизненного цикла – структура, содержащая процессы, действия и задачи, которые осуществляются в ходе разработки, функционирования и сопровождения программного продукта в течение всей жизни системы, от определения требований до завершения ее использования.
В настоящее время известны и используются следующие модели жизненного цикла:
· Каскадная модель (рис. 3.2) предусматривает последовательное выполнение всех этапов проекта в строго фиксированном порядке. Переход на следующий этап означает полное завершение работ на предыдущем этапе.
Рис. 3.2. Каскадная модель ЖЦ ПС
· Поэтапная модель с промежуточным контролем (рис. 3.3). Разработка ПС ведется итерациями с циклами обратной связи между этапами. Межэтапные корректировки позволяют учитывать реально существующее взаимовлияние результатов разработки на различных этапах; время жизни каждого из этапов растягивается на весь период разработки.
Рис. 3.3. Поэтапная модель с промежуточным контролем
· Спиральная модель (рис. 3.4). На каждом витке спирали выполняется создание очередной версии продукта, уточняются требования проекта, определяется его качество и планируются работы следующего витка. Особое внимание уделяется начальным этапам разработки – анализу и проектированию, где реализуемость тех или иных технических решений проверяется и обосновывается посредством создания прототипов (макетирования).
На практике наибольшее распространение получили две основные модели жизненного цикла:
- каскадная модель (характерна для периода 1970-1985 гг.);
- спиральная модель (характерна для периода после 1986.г.).
Рис. 3.4. Спиральная модель ЖЦ ПС
Дата добавления: 2018-05-02 ; просмотров: 1592 ; Мы поможем в написании вашей работы!
Поделиться с друзьями:
Источник: studopedia.net
Понятие жизненного цикла программного обеспечения
Понятие жизненного цикла программного обеспечения (ЖЦ ПО) является одним из базовых в программной инженерии. Жизненный цикл определяют как период времени, который начинается с момента принятия решения о необходимости создания ПО и заканчивается в момент его полного изъятия из эксплуатации.
В соответствии со стандартом ISO/IEC 12207 все процессы ЖЦ разделены на три группы (рис. 2.1).
Под моделью жизненного цикла ПО понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении ЖЦ. Она зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует. В состав жизненного цикло ПО обычно включаются следующие стадии:
1. Формирование требований к ПО.
5. Ввод в действие.
6. Эксплуатация и сопровождение.
7. Снятие с эксплуатации.
В настоящее время наибольшее распространение получили следующие основные модели ЖЦ ПО:
b) спиральная (эволюционная).
Первая применялась для программ небольшого объема, представляющих собой единое целое. Принципиальной особенностью каскадного подхода является то, что переход на следующую стадию осуществляется только после того, как будет полностью завершена работа на текущей, и возвратов на пройденные стадии не предусматривается. Ее схема приведена на рис. 2.2.
Преимущества применения каскадной модели заключаются в следующем:
• на каждой стадии формируется законченный набор проектной документации;
• выполняемые стадии работ позволяют планировать срок их завершения и соответствующие затраты.
Такая модель применяется для систем, к которым уже в начале разработки можно точно сформулировать все требования. К ним относятся, например, системы, в которых решаются, в основном, задачи вычислительного типа. Реальные процессы обычно имеют итерационный характер: результаты очередной стадии часто вызывают изменения в проектных решениях, выработанных на более ранних стадиях. Таким образом, более распространенной является модель с промежуточным контролем, которая приведена на рис. 2.3.
Основным недостатком каскадного подхода является существенное запаздывание с получением результатов и, как следствие, достаточно высокий риск создания системы, не удовлетворяющей изменившимся потребностям пользователей.
Эти проблемы устраняются в спиральной модели жизненного цикла (рис. 2.4). Ее принципиальной особенность является то, что прикладное ПО создается не сразу, как в случае каскадного подхода, а по частям с использованием метода прототипирования. Под прототипом понимается действующий программный компонент, реализующий отдельные функции и внешний интерфейс разрабатываемого ПО. Создание прототипов осуществляется в несколько итераций — витков спирали.
Каскадную (эволюционную) модель можно представить в виде диаграммы, которая приведена на рисунке 2.5.
Одним из результатов применения спиральной модели ЖЦ является получивший широкое распространение способ так называемой быстрой разработки приложений, или RAD (Rapid Application Development). Жизненный цикл ПО в соответствии с этим способом включает в себя четыре стадии:
1) анализ и планирование требований;
7) Эксплуатация и техническая поддержка.
Определение стратегии предполагает обследование системы. Основная задача обследования — оценка реального объема проекта, его целей и задач, а также получение определений сущностей и функций на высоком уровне. На этом этапе привлекаются высококвалифицированные бизнес-аналитики, которые имеют постоянный доступ к руководству фирмы.
Кроме того, предполагается тесное взаимодействие с основными пользователями системы и бизнес-экспертами. Основная задача такого взаимодействия — получить как можно более полную информацию о системе, однозначно понять требования заказчика и передать полученную информацию в формализованном виде системным аналитикам. Как правило, информация о системе может быть получена на основании ряда бесед (или семинаров) с руководством, экспертами и пользователями.
Итогом этапа определения стратегии становится документ, в котором четко сформулировано следующее:
— что именно причитается заказчику, если он согласится финансировать проект;
— когда он сможет получить готовый продукт (график выполнения работ);
— во сколько это ему обойдется (график финансирования этапов работ для крупных проектов).
В документе должны быть отражены не только затраты, но и выгода, например срок окупаемости проекта, ожидаемый экономический эффект (если его удается оценить).
Рассматриваемый этап жизненного цикла ПО может быть представлен в модели только один раз, особенно если модель имеет циклическую структуру. Это не означает, что в циклических моделях стратегическое планирование производится раз и навсегда. В таких моделях этапы определения стратегии и анализа как бы объединяются, а их разделение существует лишь на самом первом витке, когда руководство предприятия принимает принципиальное решение о старте проекта. В целом стратегический этап посвящен разработке документа уровня руководства предприятия.
Этап анализа предполагает подробное исследование бизнес-процессов (функций, определенных на предыдущем этапе) и информации, необходимой для их выполнения (сущностей, их атрибутов и связей (отношений)). Этот этап дает информационную модель, а следующий за ним этап проектирования — модель данных.
Вся информация о системе, собранная на этапе определения стратегии, формализуется и уточняется на этапе анализа. Особое внимание уделяется полноте полученной информации, ее анализу на непротиворечивость, а также поиску неиспользуемой или дублирующейся информации. Как правило, заказчик вначале формирует требования не к системе в целом, а к отдельным ее компонентам. И в этом конкретном случае циклические модели жизненного цикла ПО имеют преимущество, поскольку с течением времени с большой вероятностью потребуется повторный анализ, так как у заказчика зачастую аппетит приходит во время еды. На этом же этапе определяются необходимые компоненты плана тестирования.
Аналитики собирают и фиксируют информацию в двух взаимосвязанных формах:
a) функции — информация о событиях и процессах, которые происходят в бизнесе;
b) сущности — информация о предметах, которые имеют значение для организации и о которых что-либо известно.
При этом строятся диаграммы компонентов, потоков данных и жизненных циклов, которые описывают динамику системы. Они будут рассмотрены позднее.
На этапе проектирования формируется модель данных. Проектировщики обрабатывают данные анализа. Конечным продуктом этапа проектирования являются схема базы данных (если таковая существует в проекте) или схема хранилища данных (ER-модель) и набор спецификаций модулей системы (модель функций).
В небольшом проекте (например, в курсовом) одни и те же люди могут выступать в роли и аналитиков, и проектировщиков, и разработчиков. Перечисленные выше схемы и модели помогают найти, например, не описанные вообще, нечетко описанные, противоречиво описанные компоненты системы и прочие недостатки, что способствует предотвращению потенциальных ошибок.
Все спецификации должны быть очень точными. План тестирования системы также дорабатывается на этом этапе разработки. Во многих проектах результаты этапа проектирования оформляются в виде единого документа — так называемой технической спецификации.
При этом широкое применение получил язык UML, который позволяет получить одновременно как документы анализа, отличающиеся меньшей детализацией (их потребители — менеджеры производства), так и документы проектирования (их потребители — менеджеры групп разработки и тестирования). Этот язык будет рассмотрен позднее. Программное обеспечение, построенное с применением UML, позволяет проще осуществить генерацию кода — как минимум иерархию классов, а также некоторые части кода самих методов (процедур и функций).
Задачами проектирования являются:
• рассмотрение результатов анализа и проверка их полноты;
• семинары с заказчиком;
• определение критических участков проекта и оценка его ограничений;
• определение архитектуры системы;
• принятие решения об использовании продуктов сторонних разработчиков, а также о способах интеграции и механизмах обмена информацией с этими продуктами;
• проектирование хранилища данных: модель базы данных;
• проектирование процессов и кода: окончательный выбор средств разработки, определение интерфейсов программ, отображение функций системы на ее модули и определение спецификаций модулей;
• определение требований к процессу тестирования;
• определение требований к безопасности системы.
При реализации проекта особенно важно координировать группу (группы) разработчиков. Все разработчики должны подчиняться жестким правилам контроля исходных текстов. Они, получив технический проект, начинают писать код модулей. Основная задача разработчиков состоит в том, чтобы уяснить спецификацию: проектировщик написал, что надо сделать, а разработчик определяет, как это сделать.
На этапе разработки осуществляется тесное взаимодействие проектировщиков, разработчиков и групп тестировщиков. В случае интенсивной разработки тестировщик буквально неразлучен с разработчиком, фактически становясь членом группы разработки.
Чаще всего на этапе разработки меняются интерфейсы пользователя. Это обусловлено периодической демонстрацией модулей заказчику. Он также может существенно изменять запросы к данным.
Этап разработки сопряжен с этапом тестирования, и оба процесса идут параллельно. Синхронизирует действия тестеров и разработчиков система bug tracking.
Ошибки должны быть классифицированы согласно приоритетам. Для каждого класса ошибок должна быть определена четкая структура действий: «что делать», «как срочно», «кто ответственен за результат». Каждая проблема должна отслеживаться проектировщиком/разработчиком/тестировщиком, отвечающим за ее устранение. То же самое касается ситуаций, когда нарушаются запланированные сроки разработки и передачи модулей на тестирование.
Кроме того, должны быть организованы хранилища готовых модулей проекта и библиотек, которые используются при сборке модулей. Это хранилище постоянно обновляется. Контролировать процесс обновления должен один человек. Одно хранилище создается для модулей, прошедших функциональное тестирование, второе — для модулей, прошедших тестирование связей. Первое — это черновики, второе — то, из чего уже можно собирать дистрибутив системы и демонстрировать его заказчику для проведения контрольных испытаний или для сдачи каких-либо этапов работ.
Группы тестирования могут привлекаться к сотрудничеству уже на ранних стадиях разработки проекта. Обычно комплексное тестирование выделяют в отдельный этап разработки. В зависимости от сложности проекта тестирование и исправление ошибок может занимать треть, половину общего времени работы над проектом и даже больше.
Чем сложнее проект, тем больше будет потребность в автоматизации системы хранения ошибок — bug tracking, которая обеспечивает следующие функции:
• хранение сообщения об ошибке (к какому компоненту системы относится ошибка, кто ее нашел, как ее воспроизвести, кто отвечает за ее исправление, когда она должна быть исправлена);
• система уведомления о появлении новых ошибок, об изменении статуса известных в системе ошибок (уведомления по электронной почте);
• отчеты об актуальных ошибках по компонентам системы;
• информация об ошибке и ее история;
• правила доступа к ошибкам тех или иных категорий;
• интерфейс ограниченного доступа к системе bug tracking для конечного пользователя.
Подобные системы берут на себя множество организационных проблем, в частности вопросы автоматического уведомления об ошибках.
Собственно тесты систем принято подразделять на несколько категорий:
a) автономные тесты модулей; они используются уже на этапе разработки компонентов системы и позволяют отслеживать ошибки отдельных компонентов;
b) тесты связей компонентов системы; эти тесты также используются и на этапе разработки, они позволяют отслеживать правильность взаимодействия и обмена информацией компонентов системы;
c) системный тест; он является основным критерием приемки системы; как правило, это группа тестов, включающая и автономные тесты, и тесты связей и модели; такой тест должен воспроизводить работу всех компонентов и функций системы; его основная цель — внутренняя приемка системы и оценка ее качества;
d) приемосдаточный тест; основное его назначение — сдать систему заказчику;
e) тесты производительности и нагрузки; эта группа тестов входит в системный, именно она является основной для оценки надежности системы.
В каждую группу обязательно входят тесты моделирования отказов. Они проверяют реакцию компонента, группы компонентов, а также системы в целом на следующие отказы:
• отдельного компонента информационной системы;
• группы компонентов системы;
• основных модулей системы;
• жесткий сбой (отказ питания, жестких дисков).
Эти тесты позволяют оценить качество подсистемы восстановления корректного состояния информационной системы и служат основным источником информации для разработки стратегий предотвращения негативных последствий сбоев при промышленной эксплуатации.
Еще одним важным аспектом программы тестирования информационных систем является наличие генераторов тестовых данных. Они используются для проведения тестов функциональности, надежности и производительности системы. Задачу оценки характеристик зависимости производительности информационной системы от роста объемов обрабатываемой информации без генераторов данных решить невозможно.
Опытная эксплуатация перекрывает процесс тестирования. Система редко вводится полностью. Как правило, это процесс постепенный или итерационный (в случае циклического жизненного цикла).
Ввод в эксплуатацию проходит как минимум три стадии:
1) первоначальная загрузка информации;
2) накопление информации;
3) выход на проектную мощность (то есть собственно переход к этапу эксплуатации).
Первоначальная загрузка информации может вызвать довольно узкий спектр ошибок: в основном, рассогласование данных при загрузке и собственные ошибки загрузчиков. Для их выявления и устранения применяют методы контроля качества данных. Такие ошибки должны быть исправлены как можно быстрее.
В период накопления информации в информационной системе выявляется наибольшее количество ошибок, связанных с многопользовательским доступом. Вторая категория исправлений связана с тем, что пользователя не устраивает интерфейс. При этом циклические модели и модели с обратной связью этапов позволяют снизить затраты. Рассматриваемый этап является также наиболее серьезным тестом — тестом одобрения пользователем (customer acceptance tests).
Выход системы на проектную мощность в хорошем варианте — это доводка мелких ошибок и редкие серьезные ошибки.
Эксплуатация и техническая поддержка
На этом этапе последним документом для разработчиков является акт технической приемки. Документ определяет необходимый персонал и требуемое оборудование для поддержки работоспособности системы, а также условия нарушения эксплуатации продукта и ответственность сторон. Помимо этого обычно в виде отдельного документа оформляются условия технической поддержки.
Дата добавления: 2017-02-13 ; просмотров: 5258 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник: poznayka.org