Составить программу вычисления значения функции у от аргумента х

Урок на тему: «Приращение аргумента, приращение функции»

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Что будем изучать:

1.Определение приращения аргумента, приращения функции.
2. Непрерывная функция и приращение.
3. Примеры.

Определение приращения аргумента и приращения функции

Ребята, мы с вами научились находить пределы функции в точке. Важным остается вопрос, как изменяется значение функции при изменении значения аргумента около этой точки?
Математики ввели такое понятие – приращение аргумента и функции. Давайте запишем определение.

Приращение аргумента и функции

Определение: Пусть функция $y=f(x)$ определена в точках $x_0$ и $x_1$. Разность $x_1-x_0$ называют приращением аргумента, а разность $f(x_1)-f(x_0)$–приращением функции.

Упражнение 1. Вычисление значения функции


Иначе говоря, узнаем прирост точки $x_0$ в точке $x_1$. Приращение аргумента обозначают как $Δx$, читается как дельта x.
Приращение функции обозначают, как $Δy$ или $Δf(x)$.
Из нашего определения следует: $x_1-x_0=Δx$ => $x_1= Δx+x_0$ и $f(x_1)-f(x_0)=Δy$. Тогда получаем важное равенство: $Δy=f(x_0+ Δx)-f(x_0)$. Приращение функции может быть как положительным, так и отрицательным.

Давайте рассмотрим пример.
Найти приращение функции $y=х^3$ при переходе от $x_0=2$ к точке:
а) $x=2,1$; б) $x=1,9$.

Решение:
Обозначим $f(x)=х^3$.
Имеем: $f(2)=2^3=8$.

а) Воспользуемся формулой $Δy=f(x_0+ Δx)-f(x_0)$.
Нам надо найти значение $f(2,1)$.
$f(2,1)=2,1^3=9,261$.
$Δy= f(2,1)- f(2)= 9,261-8=1,261$.
б) $f(2)=8$.
$f(1,9)=1,9^3=6,859$.
$Δy= f(1,9)- f(2)= 6,859-8=-1,141$.

Ответ: а) $1,261$; б) $-1,141$.

Непрерывная функция и приращение

Ребята, давайте вернемся к определению непрерывной функции, и посмотрим на него с помощью приращений.
Вспомним определение непрерывной функции.
Определение. Функцию $y=f(x)$ называют непрерывной в точке $x=a$, если выполняется тождество: [lim_f(x)=f(a)] Обратим внимание: $x →a$, тогда $(x-a) →0$ т.е. $Δx → 0$.

Читайте также:
16 назовите функции каждого лога программы nod32

Также заметим: $f(x) → f(a)$ , значит $f(x) — f (a) → 0$ т.е. $Δy → 0$.

Определение непрерывности функции в точке можно записать так.
Функция $y=f(x)$ непрерывна в точке $x=a$, если в этой точке выполняется следующее условие: если $Δx→0$, то $Δy → 0$.

Примеры

1. Для функции $y=kx+b$ найти:
а) приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$;

б)предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю.

а) $f(x)= kx+b$.
$f(x+ Δx)=k(x+Δx)+b$;
$Δy= f(x+ Δx)-f(x)= k(x+Δx)+b-( kx+b)= kx+kΔx+b – kx-b= kΔx$.

40 *args и **kwargs Python. Передача аргументов в функцию

2. Для функции $y=x^3$ найти:
а) приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

б)предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю.

а) $f(x)= x^3$.
$f(x+ Δx)=(x+Δx)^3=x^3+3x^2Δx+3xΔx^2+Δx^3$.
$Δy= f(x+Δx)-f(x)= x^3+3x^2Δx+3xΔx^2+Δx^3-x^3=3x^2Δx+3xΔx^2+Δx^3$.

Задачи для самостоятельного решения:

1) Найти приращение функции $y=x^4$ при переходе от $x_0=3$ к точке:
а) $x=3,2$;
б) $x=2,8$.

2) Для функции $y=3x+5$ найти приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

3) Для функции $y=x^2$ найти приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

4) Для функции $y=2x^3$ найти приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

Средство массовой информации сетевое издание «mathematics-tests.com» зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор). Свидетельство о регистрации средства массовой информации ЭЛ № ФС 77 — 63677 от 10 ноября 2015 года. Название — https://mathematics-tests.com.

Источник: mathematics-tests.com

Как найти значение функции по значению аргумента

Как найти значение функции по значению аргумента? Это можно сделать с помощью формулы, задающей функцию.

Читайте также:
Как заработать на программах на ПК

Если функция задана формулой y=f(x), чтобы найти значение функции по данному значению аргумента, надо в формулу функции вместо каждого икса подставить это значение и вычислить значение y.

Найти значение функции, соответствующее значению аргумента, равному 3; -2,5; 1,4; 0.

[y = 2 cdot {10^3} + 5 cdot {10^2} - 1 = ]

[y = 10 cdot ( - 2,5) - 7 = - 25 - 7 = - 32;]

[y = 10 cdot 1,4 - 7 = 14 - 7 = 7;]

[y = 10 cdot 0 - 7 = 0 - 7 = - 7.]

2) Функция задана формулой

Найти значение функции при x, равном 10; -2; 1; 0.

[y = 2 cdot {10^3} + 5 cdot {10^2} - 1 = ]

[ = 2 cdot 1000 + 5 cdot 100 - 1 = 2499;]

[y = 2 cdot {( - 2)^3} + 5 cdot {( - 2)^2} - 1 = ]

[ = 2 cdot ( - 8) + 5 cdot 4 - 1 = 3;]

[y = 2 cdot {1^3} + 5 cdot {1^2} - 1 = 2 cdot 1 + 5 cdot 1 - 1 = 6;]

[y = 2 cdot {0^3} + 5 cdot {0^2} - 1 = ]

[ = 2 cdot 0 + 5 cdot 0 - 1 = - 1.]

Значение функции по данному значению аргумента можно найти также по графику. Как это сделать, мы рассмотрим в следующий раз.

Источник: www.algebraclass.ru

Найти значение функции – Как найти значение функции по значению аргумента

Таловская средняя школа

Как найти значение функции по значению аргумента? Это можно сделать с помощью формулы, задающей функцию.

Если функция задана формулой y=f(x), чтобы найти значение функции по данному значению аргумента, надо в формулу функции вместо каждого икса подставить это значение и вычислить значение y.

1) Линейная функция задана формулой y=10x-7.

Найти значение функции, соответствующее значению аргумента, равному 3; -2,5; 1,4; 0.

2) Функция задана формулой

Найти значение функции при x, равном 10; -2; 1; 0.

Значение функции по данному значению аргумента можно найти также по графику. Как это сделать, мы рассмотрим в следующий раз.

Как найти значение аргумента по значению функции

Как найти значение аргумента по значению функции? Это можно сделать с помощью формулы функции.

Если формула задана формулой вида y=f(x), чтобы найти значение аргумента по значению функции, надо в формулу вместо y подставить заданное значение функции и решить получившееся уравнение относительно икса.

1) Линейная функция задана формулой y=5x-8. Найти значение аргумента, при котором значение функции равно 7; -38;0.

Поменяем местами левую и правую часть, чтобы запись выглядела в привычном виде (знаки при этом менять не надо):

Это — линейное уравнение. Неизвестное — в одну сторону, известные — в другую (при переносе слагаемых из одной части в другую знаки меняются на противоположные):

Читайте также:
Ключ программы работы больше недоступен

Обе части уравнения делим на число, стоящее перед иксом:

2) При каком значении аргумента значение функции

Решаем квадратное уравнение.

При y=0 x=3 и x=0,5.

Это — неполное квадратное уравнение. Общий множитель x выносим за скобки

и решаем уравнение типа «произведение равно нулю»:

При y=3 x=0 и x=3,5.

Значение аргумента по заданному значению функции можно также найти с помощью графика. О том, как это сделать, мы будем говорить в следующий раз.

Как по значению аргумента найти соответствующее значение функции. ?

Как по значению аргумента найти соответствующее значение функции? Аргумент — х, значение функции — y. Нам известно некоторое значение аргумента, например, х = 2. Чтобы найти соответствующее ему значение функции нужно в формулу у = 6х + 12 вместо х подставить его значение, в нашем примере это число 2. Получаем: у = 6*2 + 12 = 12 + 12 = 24 Итак, значению аргумента х = 2 соответствует значение функции у = 24. Правило: чтобы по значению аргумента найти значение функции надо в формулу данной функции вместо х подставить его числовое значение. б) Как найти значение аргумента, которому соответствует указанное значение функции? Нам задано значение функции — y, например y = 6. Чтобы найти значение аргумента, которому соответствует указанное значение функции нужно в формулу у = 6х + 12 вместо y подставить его значение, в нашем примере это число 6. Получаем уравнение: 6 = 6х + 12 6х = -6 х = -1 Итак, значению функции y = 6 соответствует значение аргумента х = -1. Правило: чтобы по значению функции найти значение аргумента надо в формулу данной функции вместо y подставить его числовое значение.

подставляй найденный аргумент в условие и останется только одна переменная

Функцыя задана формулой y=5x-1.Найти значение функции, если значение аргумента равно -1.

Источник: xn—-8sbanwvcjzh9e.xn--p1ai

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru