Когда говорят «число делиться», то имеют в виду, что оно делиться без остатка. Так A делиться на B, лишь в том случае, если остаток от их деления равен нулю. На этом свойстве основывается понятие наибольшего общего делителя (НОД). НОД двух чисел — это наибольший из всех их общих делителей.
Одним из простейших алгоритмов нахождения наибольшего общего делителя является Алгоритм Евклида. Он назван в честь известного древнегреческого математика, автора первого из дошедших до нас теоретических трактатов по математике – Евклида Александрийского. Выделяют два способа реализации алгоритма: методом деления и методом вычитания. Рассмотрим отдельно каждый из них.
Алгоритм Евклида вычитанием.
Найти НОД двух целых чисел немного проще используя операцию вычитания. Для этого потребуется следовать такому условию: если A=B, то НОД найден и он равен одному из чисел, иначе необходимо большее из двух чисел заменить разностью его и меньшего.
Блок-схема Алгоритма Евклида вычитанием:
Построение блок-схемы расчета значения арифметического выражения

Оперируя данной блок-схемой – составляя по ней программный код, вполне целесообразно включить в него оператор цикла с вложенным условным оператором ветвления, имеющим две ветви.
Код программы на C++ (вычитание):
#include «stdafx.h» #include using namespace std; //алгоритм Евклида. Вычитание int NOD(int A, int B) < while (A!=B) if (A>B) A-=B; else B-=A; return A; > //главная функция void main () < setlocale(LC_ALL,»Rus»); int A, B; cout»; cin>>A; cout «; cin>>B; cout<<«НОД(«<
Код программы на Pascal (вычитание):
program AlgEvklid; uses crt; var A, B: integer; function NOD(A, B: integer): integer; begin while A<>B do if A>B then A:=A-B else B:=B-A; NOD:=A; end; begin write(‘A > ‘); read(A); write(‘B > ‘); read(B); write(‘НОД(‘, A, ‘, ‘, B, ‘)=’, NOD(A, B)); readkey; end.
Алгоритм Евклида делением.
Второй способ отличается от первого тем, что в основной части программы операция вычитания заменяется на операцию деления, а точнее на взятие остатка от деления большого числа на меньшее. Этот способ предпочтительнее предыдущего, так как он в большинстве случаев эффективнее, требует меньше времени. На конкретных примерах продемонстрируем работу каждого из видов реализации алгоритма.
Начнем с того, в основе которого лежит операция взятия остатка от деления. Имеем два числа: 112 и 32. Первое больше второго – заменим его остатком от деления 112 на 32. Новая пара чисел включает 16 и 32. Второе больше, поэтому также заменим его остатком от деления 32 на 16, т. е. нулем.
В результате получаем НОД=16. Таблично это выглядит так:
А теперь составим с теми же числами таблицу для алгоритма вычитанием.
Приведенный пример продемонстрировал, как в частном случае, предпочтя деление (взятие остатка от деления) вычитанию, можно выиграть в быстродействии. Преимущество деления становится видно наиболее отчетливо после следующих рассуждений. Предположим, что A меньше B, а так как НОД двух целых чисел меньше или равен наименьшему из них, то и тут он меньше или равен A; поэтому оптимальным будет уже при первой операции заменить B числом меньшим или равным A.
Паскаль для новичков 6 — блок-схемы flowchart
Далее, известно, что в одном случае большее число заменяется разностью его и меньшего числа, а в другом остатком от деления. При делении B на A (большее на меньшее), остаток не может превышать число, стоящее в знаменателе (т. е. A), следовательно, взятие остатка от деления гарантирует оптимальный исход. Но то же самое нельзя сказать в отношении операции вычитания, поскольку совсем необязательно, что сразу после выполнения первого вычитания, B станет меньше или равно A. К примеру, пусть A будет равняться 150, а B – 1100. Так, используя вычитание, мы в первом действии получим B равное 950, в то время как метод деления даст 50.
Блок-схема алгоритма Евклида делением:

За исключением условия выхода из цикла и операций в выражениях, эта блок-схема аналогична предыдущей. Достаточно то условие, при котором тело цикла будет выполняться до тех пор, пока обе переменных имеют значения отличные от нуля, поскольку, когда условие перестанет быть истинным, то из этого последует, что одно из теперешних значений является искомым наибольшим общим делителем. Да и потом, никак нельзя допустить следующей итерации, в которой будет предпринята попытка деления на нуль.
Код программы на C++ (деление):
#include «stdafx.h» #include using namespace std; //алгоритм Евклида. Деление int NOD(int A, int B) < while (A!=0 B!=0) if (A>B) A%=B; else B%=A; return A+B; > //главная функция void main () < setlocale(LC_ALL,»Rus»); int A, B; cout»; cin>>A; cout «; cin>>B; cout<<«НОД(«<
Код программы на Pascal (деление):
program AlgEvklid; uses crt; var A, B: integer; function NOD(a, B: integer): integer; begin while (A<>0) and (B<>0) do if A>B then A:=A mod B else B:=B mod A; NOD:=A+B end; begin write(‘A > ‘); read(A); write(‘B > ‘); read(B); write(‘НОД(‘, A, ‘, ‘, B, ‘)=’, NOD(A, B)); readkey; end.
Источник: kvodo.ru
Написать алгоритм, составить блок-схему и отладить программу — Turbo Pascal
Помогите пожалуйста. Заранее спасибо!) Задание: алгоритм, блок-схему и программу для вычисления следующего выражения, используя подпрограмму-функцию или подпрограмму-процедуру: Написать алгоритм, составить блок-схему и отладить программу по вычислению бесконечной суммы с точностью 0,001, используя подпрограмму-функцию и подпрограмму-процедуру:
Код к задаче: «Написать алгоритм, составить блок-схему и отладить программу»
Листинг программы
uses crt; function f(n:integer):real; var i:integer; s:real; begin s:=sqrt(n); for i:=n-1 downto 1 do s:=sqrt(1+s); f:=s; end; var n:integer; begin clrscr; write(‘n=’); readln(n); write(‘rez=’,f(n):0:3); readln end.
Источник: studassistent.ru
«VBA Разработка алгоритма. Блок-схема. Структуры алгоритмов»
Перед началом разработки алгоритма необходимо четко уяснить задачу: что требуется получить в качестве результата, какие исходные данные необходимы и какие имеются в наличии, какие существуют ограничения на эти данные. Далее требуется записать, какие действия необходимо предпринять для получения из исходных данных требуемого результата.
На практике наиболее распространены следующие формы представления алгоритмов:
словесная (записи на естественном языке);
графическая (изображения из графических символов);
псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);
программная (тексты на языках программирования).
Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке.
Пример. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел.
Алгоритм может быть следующим:
1. задать два числа;
2. если числа равны, то взять любое из них в качестве ответа и остановиться, в противном случае продолжить выполнение алгоритма;
3. определить большее из чисел;
4. заменить большее из чисел разностью большего и меньшего из чисел;
5. повторить алгоритм с шага 2.
Описанный алгоритм применим к любым натуральным числам и должен приводить к решению поставленной задачи. Убедитесь в этом самостоятельно, определив с помощью этого алгоритма наибольший общий делитель чисел 125 и 75.
Словесный способ не имеет широкого распространения по следующим причинам:
такие описания строго не формализуемы;
страдают многословностью записей;
допускают неоднозначность толкования отдельных предписаний.
Графический способ представления алгоритмов является более компактным и наглядным по сравнению со словесным.
При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.
Такое графическое представление называется схемой алгоритма или блок-схемой.
Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.
Он занимает промежуточное место между естественным и формальным языками.
С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой стороны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.
В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя. Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.
2.2 Блок-схема.
Блок-схемой называют графическое представление алгоритма, в котором он изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.
В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий.
Приведем наиболее часто употребляемые символы.
| Название символа | Обозначение и пример заполнения | Пояснение |
| Процесс | Вычислительное действие или последовательность действий | |
| Решение | Проверка условий | |
| Модификация | Начало цикла | |
| Предопределенный процесс | Вычисления по подпрограмме, стандартной подпрограмме | |
| Ввод-вывод | Ввод-вывод в общем виде | |
| Пуск-останов | Начало, конец алгоритма, вход и выход в подпрограмму | |
| Документ | Вывод результатов на печать |
Блок «процесс» применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.
Блок «решение» используется для обозначения переходов управления по условию. В каждом блоке «решение» должны быть указаны вопрос, условие или сравнение, которые он определяет.
Блок «модификация» используется для организации циклических конструкций. (Слово модификация означает видоизменение, преобразование). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.
Блок «предопределенный процесс» используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.
Пример. Составить блок-схему алгоритма определения высот ha, hb, hc треугольника со сторонами a, b, c, если
где p = (a + b + c) / 2.
Решение. Введем обозначение тогда h a = t/a, h b = t/b, h c = t/c. Блок-схема должна содержать начало, ввод a, b, c, вычисление p, t, h a , h b , h c , вывод результатов и останов.
2.3 Структуры алгоритмов.
Алгоритмы можно представлять как некоторые структуры, состоящие из отдельных базовых (т.е. основных) элементов. Естественно, что при таком подходе к алгоритмам изучение основных принципов их конструирования должно начинаться с изучения этих базовых элементов
Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур: следование, ветвление, цикл.
Характерной особенностью базовых структур является наличие в них одного входа и одного выхода.
1. Базовая структура следование. Образуется из последовательности действий, следующих одно за другим:
2. Базовая структура ветвление. Обеспечивает в зависимости от результата проверки условия (да или нет) выбор одного из альтернативных путей работы алгоритма. Каждый из путей ведет к общему выходу, так что работа алгоритма будет продолжаться независимо от того, какой путь будет выбран.
Структура ветвление существует в четырех основных вариантах:
если-то-иначе;
выбор-иначе.
1) если-то если условие то действия конец если 2) если-то-иначе если условие то действия 1 иначе действия 2 конец если 3) выбор выбор при условие 1: действия 1 при условие 2: действия 2 . . . . . . . . . . . . при условие N: действия N конец выбора 4) выбор-иначе выбор при условие 1: действия 1 при условие 2: действия 2 . . . . . . . . . . . . при условие N: действия N иначе действия N+1 конец выбора
Пример. Составить блок-схему алгоритма вычисления функции
Базовая структура цикл. Обеспечивает многократное выполнение некоторой совокупности действий, которая называется телом цикла.
Структура цикл существует в трех основных вариантах:
Цикл типа для.
Предписывает выполнять тело цикла для всех значений некоторой переменной (параметра цикла) в заданном диапазоне.
Цикл типа пока.
Предписывает выполнять тело цикла до тех пор, пока выполняется условие, записанное после слова пока.
Цикл типа делать — пока.
Предписывает выполнять тело цикла до тех пор, пока выполняется условие, записанное после слова пока. Условие проверяется после выполнения тела цикла.
Заметим, что циклы для и пока называют также циклами с предпроверкой условия а циклы делать — пока — циклами с постпроверкой условия. Иными словами, тела циклов для и пока могут не выполниться ни разу, если условие окончания цикла изначально не верно. Тело цикла делать — пока выполнится как минимум один раз, даже если условие окончания цикла изначально не верно.
цикл для i от i1 до i2 шаг i3 тело цикла (последовательность действий) конец цикла цикл пока условие тело цикла (последовательность действий) конец цикла цикл делать тело цикла (последовательность действий) пока условие конец цикла
Пример. Составить блок-схему алгоритма вычисления функции
yk = sin (kx) + cos (k/x), k = 1, 2, . 50
Пример.
Составить блок-схему вычисления функции
y = a 3 / (a 2 + x 2 )
при x, изменяющимся от x = 0 до x = 3 с шагом Dx = 0,1
Итерационные циклы. Особенностью итерационного цикла является то, что число повторений операторов тела цикла заранее неизвестно. Для его организации используется цикл типа пока. Выход из итерационного цикла осуществляется в случае выполнения заданного условия.
На каждом шаге вычислений происходит последовательное приближение и проверка условия достижения искомого результата.
Пример. Составить алгоритм вычисления суммы ряда
с заданной точностью (для данного знакочередующегося степенного ряда требуемая точность будет достигнута, когда очередное слагаемое станет по абсолютной величине меньше).
Вычисление сумм — типичная циклическая задача. Особенностью же нашей конкретной задачи является то, что число слагаемых (а, следовательно, и число повторений тела цикла) заранее неизвестно. Поэтому выполнение цикла должно завершиться в момент достижения требуемой точности.
При составлении алгоритма нужно учесть, что знаки слагаемых чередуются и степень числа х в числителях слагаемых возрастает.
Решая эту задачу «в лоб» путем вычисления на каждом i-ом шаге частичной суммы
S:=S+(-1)**(i-1)*x**i/i ,