После окончания этапа программирования, т.е. собственно процесса написания программы, проводится ее проверка для обнаружения и исправления возможных ошибок. На эмуляторе микропроцессора АТ89С51 проверяется корректность кода программы по содержимому различных регистров процессора. В контрольных точках программы, выбранных для удобства после каждого логически законченного куска кода, мы смотрим содержимое регистра R7. Внесенные в программу отладочные строки для контроля ее пошагового выполнения позволяют своевременно выявлять неточности реализации общего алгоритма изделия ТС16Е1. Применение модульного принципа тестирования программы существенно облегчает этот процесс.
Далее проверенный таким образом ассемблерный текст программы с помощью компилятора ассемблера микропроцессора АТ89С51 переводится в hex‑файл. На этом этапе так же можно проконтролировать возможные неточности кода. При дальнейшем переводе этого текста программы в машинный код, производится поиск синтаксических ошибок в программе и, в случае их обнаружения, печатается диагностика, помогающая последующей локализации ошибок. Отсутствие синтаксических ошибок не говорит о том, что в программе нет ошибок.
Отладка и тестирование программ
По окончании такой отладки программы начинается ее эксплуатация. С помощью программатора полученный машинный код прошивается в тестовой ПЗУ с ультрафиолетовым стиранием, и начинается тестирование опытного образца. Производится анализ работы системы в целом, обычно многократный.
Первые полученные результаты реальных данных подвергаются тщательному анализу, чтобы убедиться в пригодности использованного метода и установить согласованность полученных результатов с имеющимися данными и теорией. Если правильность получаемых результатов не. вызывает сомнений и эффективность программы удовлетворительна, то ее эксплуатация продолжается. В случае отклонения результатов работы программы от ожидаемых, происходит возврат к поиску возможных ошибок на этапе кодирования общего алгоритма изделия ТС16Е1.
1.7.4 Оформление программы и ее возможная модернизация
Для возможности эксплуатации программы кем-либо кроме автора она должна быть оформлена. Составляется ее описание, излагаются примененные методы решения, приводятся алгоритмы и текст программы. Наличие описания программы позволяет не только успешно эксплуатировать ее длительное время, но и проводить ее модернизацию и использовать в дальнейших разработках.
Основную часть описания составляют материалы, с которыми шла работа на предыдущих этапах разработки. Поэтому для ускорения этапа оформления все перечисленные материалы всегда должны быть в рабочем состоянии и по содержанию вполне соответствовать друг другу и отлаженной программе, кроме того, уже на этапах разработки их нужно представлять в таком виде, чтобы они могли быть использованы для описания программы без дополнительных переделок. На основании результатов, полученных в ходе эксплуатации программы, составляется отчет о проделанной работе, оценивается выбранный метод решения задачи и эффективность программы.
Принципы тестирования и отладки решений заданий по программированию
Если разработчик программы постоянно работает в некоторой области науки или техники, то обычно рано или поздно наступает такой момент, когда перед ним возникает вопрос о модернизации старой программы или о составлении новой, развивающей идеи, реализованные в прежней программе. Модернизация программы проходит те же этапы, что и разработка, и начинается с составления технического задания на модернизацию. Успешное осуществление модернизации зависит от того, насколько легко можно будет при разработке новой программы использовать блоки старой программы и вносить в них изменения. Быстрое выполнение такого рода работ зависит, в свою очередь, как от структуры модернизируемой программы, так и от качества ее оформления.
1.7.5 Надежность программного продукта
Надежность является одним из важнейших показателей качества программ, однако они характеризуются еще рядом функциональных и конструкторских критериев качества, выбор которых в значительной степени зависит от их целевого назначения. Проблема обеспечения и анализа надежности систем может быть решена на базе системного подхода с детально проработанной программой работ по исследованию и обеспечению надежности каждой подсистемы в течение всего жизненного цикла.
Программы, разрабатываемые для решения инженерных и научно-исследовательских задач характеризуются неполным использованием ресурсов вычислительных систем и относительно небольшим временем жизненного цикла. Длительность разработки этих программ обычно невелика. Их эксплуатация носит эпизодический и кратковременный характер, отсутствуют жесткие ограничения на допустимую длительность ожидания результатов, практически всегда имеется возможность достаточно строго проконтролировать выходные данные и при необходимости поставить контрольные эксперименты. К этому типу программ практически неприменимы основные понятия теории надежности. И тем не менее, основные принципы создания надежного программного обеспечения справедливы и в этом случае.
Для определения надежности любых систем необходимо проводить регулярный или эпизодический диагноз их состояния. Теория, принципы построения средств и методы организации процесса диагноза систем развиваются в технической диагностике. Их применение для анализа технического состояния комплексов программ имеет ряд особенностей. Основные задачи технической диагностики включают в себя:
· проверку исправности системы;
· проверку работоспособности системы и возможности выполнения всех функций с характеристиками, заданными технической документацией;
· проверку правильности функционирования в данном режиме работы в данный момент времени;
· поиск и локализацию неисправностей в системе.
Объем и последовательность проверок, а также методы анализа результатов определяются алгоритмами диагноза. Основная задача диагноза состоит в определении текущего состояния системы, как работоспособного так и неработоспособного.
На надежность функционирования программного обеспечения влияет структура и технология разработки программ. В зависимости от структурного построения программы последствия ошибки могут быть локализованы в некотором небольшом участке программы и данных либо распространиться на значительно большое расстояние от места расположения ошибки. Строгое иерархическое построение программы на базе единообразно оформленных законченных программных модулей обеспечивает снижение вероятности ошибки в каждой команде программы и снижает возможность распространения последствий ошибок за пределы программного модуля. Выбранная в нашем случае линейная организация всех трех частей программы существенно повышает надежность продукта в целом, облегчает тестирование и отладку, поиск и исправление ошибок. Простота реализации заложена в основу написания данной программы.
В ходе выполнения данного дипломного проекта была разработана программа управления автоматизированным комплексом многоканальной связи. Предъявленные в техническом задании к проекту требования выполнены полностью: программное обеспечение для процессора АТ89С51 разработано в соответствии с общим алгоритмом ПО изделия ТС16Е1, ОЗУ данных процессора АТ89С51 использовано для хранения карты памяти состояний части битов регистров CR1, CR2, TSR и PSR 16‑ти линейных интерфейсов по заданным адресам в заданном порядке, обеспечено своевременное обновление карты памяти состояний части битов регистров CR1, CR2, TSR и PSR всех интерфейсов через подпрограмму обработки прерываний линейных интерфейсов, обеспечена возможность передачи карты памяти состояний оговоренных регистров, взаимодействуя с внешней ПЭВМ, используя интерфейс RS‑232, через последовательный порт Р3. Подробно описана структура программы, алгоритмы построения и работы всех трех ее частей для дальнейшего использования, модернизации и возможного применения отдельно взятых частей кода при разработке подобных программных продуктов для устройств связи.
2. Технологическая часть 2.1 Требования к программным системам
Каждая программа, входящая в систему, должна отвечать таким требованиям, как:
Будем говорить, что программа является:
· правильной, если она функционирует в соответствии с техническим заданием. Подразумевается, что техническое задание составлено в четкой форме, позволяющей однозначно судить о том, действительно ли программа отвечает перечисленным в нем требованиям.
· точной, если выдаваемая ею числовые данные имеют допустимые отклонения от аналогичных результатов, полученных с помощью идеальных математических зависимостей.
· совместимой, если она работает должным образом не только автономно, но и как составная часть всей программной системы, осуществляющей обработку информации.
· надежной, если она при всех условиях обеспечивает полную повторяемость результатов. Любой человек, имеющий опыт работы с ЭВМ, может подтвердить, что в его практике еще не встречалось ни абсолютно надежного системного программного обеспечения, ни безукоризненно работающих машин. И, несмотря на оптимистичность высказываний некоторых программистов, то же самое можно сказать о прикладных программных системах. Впрочем, уровень их надежности может быть повышен за счет использования встроенных механизмов резервирования и самоконтроля.
· универсальной, если она правильно работает при любых допустимых вариантах исходных данных. В ходе разработки программ должны предусматриваться специальные средства защиты от ввода неправильных данных, обеспечивающие целостность системы.
· защищенной, если она сохраняет работоспособность при возникновении сбоев. Это качество особенно важно для программ, предназначенных для решения задач в режиме реального времени. В подобных приложениях отказ оборудования может повлечь катастрофические последствия – например, аварию ракеты или ядерного реактора. Указанным свойством должны также обладать программы с большим временем выполнения, осуществляющие обработку постоянно хранимых файлов.
· полезной, если задачи, которые она решает представляют практическую ценность.
· эффективной, если объем требуемых для ее работы ресурсов ЭВМ не превышает допустимых пределов.
· проверяемой, если ее качества могут быть продемонстрированы на практике. Здесь подразумевается возможность проверки таких свойств программы как правильность и универсальность. Можно применить формальные математические методы, позволяющие установить, действительно ли программа удовлетворяет техническим условиям и выдает достаточно точные результаты. Однако существуют и неформальные способы оценки качества программ, причем иной раз они оказываются более убедительными, чем формальные. Имеются в виду такие неформальные приемы, как прогоны с остановами в контрольных точках, обсуждение результатов с заинтересованными пользователями и др.
· адаптируемой, если она допускает быструю модификацию с целью приспособления к изменяющимся условиям функционирования. Адаптируемость в значительной степени зависит от конструкции программы, от того, насколько квалифицированно она составлена и полно снабжена документацией.
Программы редко применяются как самостоятельные единицы. Чаще всего они являются элементами более крупных информационных систем, осуществляющих сбор, хранения и обработку данных. Такие системы становятся неотъемлемой частью механизма функционирования предприятия, на которых они эксплуатируются. Прямо или косвенно, они затрагивают деятельность множества людей, чтобы это воздействие носило положительный характер, программы не просто должны быть полезными, надежными и эффективными, но должны явно обнаруживать эти качества для тех, кто с ними работает. Иными словами, как процесс проектирования программной системы, так и его конечный продукт должны быть ориентированы на нужды пользователя.
Пользователи будут уверены в эффективности системы, если почувствуют, что в группе, занимающейся ее разработкой, прислушиваются к их пожеланиям, если найдут, что форма выходных данных и результатов удобна и близка к привычной, и, наконец, если им будет продемонстрировано, что система должным образом перерабатывает информацию, отобранную по их собственному усмотрению.
Программа должна быть построена таким образом, чтобы могла применяться в различных приложениях и обходится только имеющимися аппаратными ресурсами и средствами программирования. Процесс разработки программы в значительной степени зависит от наличия специализированных языков программирования, каталогов данных, оптимизирующих компиляторов, генераторов тестовых задач. Существенно проще создать хорошую программу, располагая эффективными вспомогательными средствами.
Всякое использование ЭВМ предполагает стандартизацию данных и способов обработки. Эффективная реализация преимуществ ЭВМ возможна лишь в тех случаях, когда необходимо выполнять либо трудоемкие вычисления, либо обработку больших объемов информации.
После завершения этапа предварительных исследований составляется список требований, предъявляемых к системе. В него должны быть включены результаты анализа обстановки, описание выполняемых системой функций и ограничения, которые необходимо учитывать в процессе проектирования.
Под обстановкой в данном случае понимается совокупность условий, при которых предполагается эксплуатировать систему. К ним относятся аппаратные и программные ресурсы, предоставляемые системе, внешние условия ее функционирования а также состав людей и работ, имеющих к ней отношение. Должны быть продуманы изменения в текущей деятельности организации, обусловленные внедрением системы. Возможно, понадобится иная расстановка персонала, придется внести изменения в структуру выполняемых работ. Могут также потребоваться дополнительные вычислительные мощности.
Функциональные требования к системе содержат четкое описание всего того, что она должна делать. Ограничениями в процессе проектирования являются директивные сроки завершения отдельных этапов, имеющиеся в наличии ресурсы, организационные процедуры и мероприятия, обеспечивающие сохранность информации.
Организация-заказчик и группа разработчиков совместно составляют официальный перечень спецификаций, а также договор о порядке проведения проектных работ и приемке системы. Иногда процесс создания системы разбивается на два отдельных этапа, в которых участвуют различные группы специалистов. Первая из них занимается, собственно, проектированием системы, а вторая – ее программной реализацией. В таких случаях договоры заключаются с обеими группами, причем между указанными этапами должен быть предусмотрен определенный промежуток, выделяемый для анализа и обсуждений характеристик системы.
Информация о работе «Программное обеспечение управления автоматизированным комплексом многоканальной связи»
Источник: kazedu.com
49975 (Этапы разработки программ. Тестирование и отладка. Документирование программ), страница 2
Документ из архива «Этапы разработки программ. Тестирование и отладка. Документирование программ», который расположен в категории » «. Всё это находится в предмете «информатика» из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе «курсовые/домашние работы», в предмете «информатика, программирование» в общих файлах.
Онлайн просмотр документа «49975»
Текст 2 страницы из документа «49975»
- накапливать информации о покрытых и непокрытых ветвях для всех использованных тестов;
- выделять разработчику еще не покрытые при тестировании участки программы, облегчая выбор следующих тестов;
- поддерживать более мощные критерии полноты структурного тестирования.
1.2.3.2 Совместимое тестирование модулей
Известны два подхода к совместному тестированию модулей: пошаговое и монолитное тестирование. При монолитном тестировании сначала по отдельности тестируются все модули программного комплекса, а затем все они объединяются в рабочую программу для комплексного тестирования. При пошаговом тестировании каждый модуль для своего тестирования подключается к набору уже проверенных модулей.
В первом случае для автономного тестирования каждого модуля требуется модуль – драйвер (то есть вспомогательный модуль, имитирующий вызов тестируемого модуля и один или несколько модулей — заглушек то есть вспомогательных модулей, имитирующих работу модулей, вызываемых из тестируемого). При пошаговом тестировании модули проверяются не изолированно друг от друга, поэтому требуются либо только драйверы, либо только заглушки. При сравнении пошагового и монолитного тестирования можно отметить следующие преимущества первого подхода:
- меньшая трудоемкость (при монолитном тестировании требуются 5 драйверов и 5 заглушек; при пошаговом тестировании требуются или только 5 драйверов — если модули подключаются “снизу вверх ”, — или только 5 заглушек — если модули подключаются “сверху вниз”);
- более раннее обнаружение ошибок в интерфейсах между модулями (их сборка начинается раньше, чем при монолитном тестировании);
- легче отладка, то есть локализация ошибок (они в основном связаны с последним из подключенных модулей);
- более совершенные результаты тестирования (более тщательная проверка совместного использования модулей).
При использовании пошагового тестирования возможны две стратегии подключения модулей: нисходящая и восходящая.
Нисходящее тестирование начинается с главного (или верхнего) модуля программы, а выбор следующего подключаемого модуля происходит из числа модулей, вызываемых из уже протестированных.
Одна из основных проблем, возникающих при нисходящем тестировании, — создание заглушек. Другая проблема, которую необходимо решать при нисходящем тестировании, — форма представления тестов в программе, так как, как правило, главный модуль получает входные данные не непосредственно, а через специальные модули ввода, которые при тестировании сначала заменяются заглушками. Для передачи в главный модуль разных тестов нужно или иметь несколько разных заглушек, или записать эти тесты в файл во внешней памяти и с помощью заглушки считывать их. Поскольку после тестирования главного модуля процесс проверки может продолжаться по-разному, следует придерживаться следующих правил:
- модули, содержащие операции ввода-вывода, должны подключаться к тестированию как можно раньше;
- критические (т.е. наиболее важные) для программы в целом модули также должны тестироваться в первую очередь.
Основные достоинства нисходящего тестирования: уже на ранней стадии тестирования есть возможность получить работающий вариант разрабатываемой программы; быстро могут быть выявлены ошибки, связанные с организацией взаимодействия с пользователем.
Проблемы, которые могут возникать при нисходящем тестировании: появляется соблазн совмещения нисходящего проектирования с тестированием, что, как правило, неразумно, т.к. проектирование — процесс итеративный и в нем неизбежен возврат на верхние уровни и исправление принятых ранее решений, что обесценивает результаты уже проведенного тестирования; может возникнуть желание перейти к тестированию модуля следующего уровня до завершения тестирования предыдущего по объективным причинам (необходимости создания нескольких версий заглушек, использования модулями верхнего уровня ресурсов модулей нижних уровней).
При восходящем тестировании проверка программы начинается с терминальных модулей (т.е. тех, которые не вызывают не каких других модулей программы). Эта стратегия во многом противоположна нисходящему тестированию (в частности, преимущества становятся недостатками и наоборот). Нет проблемы выбора следующего подключаемого модуля — учитывается лишь то, чтобы он вызывал только уже протестированные модули. В отличие от заглушек драйверы не должны иметь несколько версий, поэтому их разработка в большинстве случаев проще.
Другие достоинства восходящего тестирования: поскольку нет промежуточных модулей (тестируемый модуль является для рабочего варианта программы модулем самого верхнего уровня), нет проблем, связанных с возможностью или трудностью задания тестов; нет возможности совмещения проектирования с тестированием; нет трудностей, вызывающих желание перейти к тестированию следующего модуля, не завершив проверки предыдущего. Основными недостатком восходящего тестирования является то, что проверка всей структуры разрабатываемого программного комплекса возможна только на завершающей стадии тестирования. Хотя однозначного вывода о преимущества той или иной стратегии пошагового тестирования сделать нельзя (нужно учитывать конкретные характеристики тестируемой программы), в большинстве случаев более предпочтительным является восходящее тестирование.
1.2.3.3 Семантическая отладка
Ошибки этапа выполнения или семантические ошибки происходят, когда вы компилируете полную программу, которая при ее выполнении делает что-то недопустимое. То есть, программа содержит допустимые операторы, но при их выполнении что-то происходит неверно. Например, программа может пытаться открыть для ввода несуществующий файл или выполнить деление на ноль.
Семантическая отладка — это процесс нахождения и исправления ошибок, связанных с неправильным указанием логических страниц данных.
Существует 3 способа отладки программы:
- Пошаговая отладка программ с заходом в подпрограммы;
- Пошаговая отладка программ с выполнением подпрограммы как одного оператора;
- Выполнение программы до точки остановки.
Пошаговая отладка программ заключается в том, что выполняется один оператор программы и, затем контролируются те переменные, на которые должен был воздействовать данный оператор.
Если в программе имеются уже отлаженные подпрограммы, то подпрограмму можно рассматривать, как один оператор программы и воспользоваться вторым способом отладки программ.
Если в программе существует достаточно большой участок программы, уже отлаженный ранее, то его можно выполнить, не контролируя переменные, на которые он воздействует. Использование точек остановки позволяет пропускать уже отлаженную часть программы. Точка остановки устанавливается в местах, где необходимо проверить содержимое переменных или просто проконтролировать, передаётся ли управление данному оператору.
1.3 Документирование программы
Последней составляющей процесса программирования является документирование. Оно включает широкий спектр описаний, облегчающих процесс программирования и обогащающих результирующую программу. Постоянное документирование должно составлять неотъемлемую часть каждого шага программирования.
Постановка задачи, проектные документы, алгоритмы и программы – все это документы. Внутренняя документация, включенная непосредственно в программу, облегчает чтение кода. Назначение учебного пособия (еще одной формы документации) – научить пользователя применять новую программу; справочное руководство позволяет ознакомиться с описанием команд программного обеспечения.
При разработке программы создается большой объем разнообразной документации. Она необходима как средство передачи информации между разработчиками программы, как средство управления разработкой программы и как средство передачи пользователям информации, необходимой для применения и сопровождения программы.
1.3.1 Пользовательская документация программы
- Пользовательская документация программы объясняет пользователям, как они должны действовать, чтобы использовать данную программу. Она необходима, если программа предполагает какое-либо взаимодействие с пользователями. К такой документации относятся документы, которыми руководствуется пользователь при установке программы.
- Состав пользовательской документации зависит от аудиторий, на которую ориентировано данное ПО, и от режима использования документов. Аудитория – это пользователи, у которых есть необходимость в определенной пользовательской документации. Хороший пользовательский документ зависит от правильного выбора аудитории, для которой он предназначен.
- Качество пользовательской документации существенно определяет успех самой программы. Она должна быть достаточно просто, понятна и удобна для пользователя. Поэтому не редко к созданию конечного варианта документации не редко привлекаются профессиональные технические писатели. Кроме того, для обеспечения более качественной пользовательской документации разработан ряд стандартов, в которых предписывается порядок разработки этой документации.
1.3.2 Документация по сопровождению программы
- Документация по сопровождению программы описывает программу с точки зрения её разработки. Эта документация необходима, если программа предполагает изучение того, как она сконструирована.
- Сопровождение – это продолжающаяся разработка, поэтому если созданную программу совершенствуют и обновляют не сами её создатели, то чаще всего привлекают специальную команду разработчиков – сопроводители. Этой команде придется иметь дело с такой же документацией, с той лишь разницей, что им нужно будет подробно просматривать и изучать документацию, созданную первоначальными (основными) разработчиками, с той целью, чтоб понять строение и процесс разработки изменяемой программы, и внести в эту документацию необходимые изменения, повторяя в значительной степени технологический процессы, с помощью которых создавалась первоначальная программа.
- Документация по сопровождению программы можно разбить на две группы:
- 1. документация, определяющая строение программ и структур данных программы и технологию их разработки;
- 2. документацию, помогающую вносить изменения в программу.
- Документация первой группы содержит итоговые документы каждого технологического этапа разработки. Она включает следующие документы:
- Внешнее описание;
- Описание архитектуры программы, включая внешнюю спецификацию;
- Описание модульной системы, включая внешнюю спецификацию каждого включенного модуля;
- Для каждого модуля — его спецификация и описание его строения;
- Тексты модулей на выбранном языке программирования;
- Документы второй группы содержат:
- Руководство по сопровождению программы, которое описывает известные проблемы вместе с программой, описывает, какие части программы являются аппаратно и программно зависимыми.
1.4 Запуск готовой программы и анализ полученных результатов
- После полученного нами файла с *.exe (обычно) разрешением мы можем запустить его и ещё раз проверить (проанализировать) верно, ли работает программа. На этом этапы создания программы закончены.
Источник: studizba.com
Отладка и тестирование программы
Отладка программыявляется итеративным процессом обнаружения и исправления ошибок и обычно требует последовательного выполнения четырех этапов:
· локализации ошибки в тексте программы;
· установления причины ошибки;
Некоторые ошибки проявляются после первого же запуска программы на выполнение, и для их обнаружения не надо прибегать ни к каким специальным средствам. Некоторые ошибки проявляются в случайные моменты работы программы. С такими ошибками справиться труднее всего – зафиксировать условия возникновения ошибки, понять причину ошибки и устранить ее. С целью обнаружения подобных ошибок осуществляется тестирование программы– ее выполнение для специально подобранных представительных контрольных примеров – тестов. Тест – это такой набор исходных данных, для которого вручную или другим способом просчитаны промежуточные и конечные результаты и который может быть использован для получения информации о надежности проверяемой программы.
Тестирование программы должно включать в себя прогон трех видов контрольных примеров: нормальных ситуаций, граничных ситуаций и случаев неправильных данных. Нормальные случаи – это примеры с правильными входными данными. Если программа не работает в подобных случаях, она требует серьезных переделок.
Граничные контрольные примеры помогают установить, способна ли программа нормально реагировать на особые случаи во входных данных. Граничные примеры представляют собой данные, которые, будучи математически корректными, приводят программу к необходимости работать особым образом. Неправильными являются такие данные, которые расположены вне допустимого диапазона. Примеры с неправильными данными должны быть обработаны соответствующим образом, поскольку в повседневной эксплуатации программе придется иметь дело и с неверными входными данными.
После того как ошибка обнаружена, необходимо найти в исходном тексте программы то место, в котором она возникала, – локализовать ошибку. Можно использовать ряд различных методов отладки, позволяющих обнаружить расположение ошибки; выбор существенно зависит от особенностей ситуации.
Большинство программистов начинают с неформального метода, известного под названием проверка за столом. Используя контрольный пример, который привел к ошибке в программе, программист аналитически трассирует листинг программы в надежде локализовать ошибку. Проверка за столом – это хороший метод, поскольку он заставляет программиста детально понять работу программы. Если применение метода проверки за столом оказалось бесплодным, нужно использовать специальные методы и способы отладки, позволяющие наблюдать за передачей управления в программе и за изменением значений наиболее важных переменных. Полученная отладочная информация позволит локализовать подозрительные ситуации, провести анализ и выявить причину ошибки, устранить ее, а затем продолжить поиск других ошибок.
Причины и типы ошибок
В общем случае ошибки могут возникать на любом этапе разработки программы, причина ошибок может быть связана с недопониманием сути задачи, недостатками проектирования алгоритма, неправильным использованием языковых средств. При выполнении программы ошибки разного типа проявляют себя различным образом, и их принято подразделять на следующие группы:
Синтаксические ошибки– это ошибки, проявляющиеся на этапе компиляции программы и возникающие в связи с нарушением синтаксических правил написания предложений используемого языка программирования (к таким ошибкам относятся пропущенные точки с запятой, ссылки на неописанные переменные, присваивание переменной значений неверного типа и т. д.). Если компилятор встречает в тексте программы оператор или описание, которые он не может интерпретировать, то он позиционирует курсор на место обнаруженной ошибки и в строку статуса выводит сообщение, содержащее номер ошибки и ее краткое описание.
Семантические ошибки– это ошибки, проявляющиеся на этапе выполнения программы при ее попытке вычислить недопустимые значения параметров или выполнить недопустимые действия. Причина возникновения ошибок данного типа связана с нарушением семантических правил написания программ (примером являются ситуации попытки открыть несуществующий файл или выполнить деление на нуль).
Если программа обнаруживает ошибку такого типа, то она завершает свое выполнение и выводит соответствующее сообщение в окне Build, содержащее номер строки с ошибкой и ее возможный характер. Список сообщений можно просмотреть с помощью команды меню View/Debug Windows/EventLog. При выполнении программы из среды Delphi автоматически выбирается соответствующий исходный файл и в нем находится местоположение ошибки. Если же программа выполнялась вне среды и в ней появилась ошибка данного типа, то необходимо запустить среду и найти вызвавший ошибку оператор.
Логические (смысловые) ошибки– самые сложные и трудноуловимые, связанные с неправильным применением тех или иных алгоритмических конструкций. Эти ошибки при выполнении программы могут проявиться явно (выдано сообщение об ошибке, нет результата или выдан неверный результат, программа «зацикливается»), но чаще они проявляют себя только при определенных сочетаниях параметров или вообще не вызывают нарушения работы программы, которая в этом случае выдает правдоподобные, но неверные результаты.
Ошибки первого типа легко выявляются самим компилятором. Обычно устранение синтаксических ошибок не вызывает особых трудностей. Более сложно выявить ошибки второго и особенно третьего типа. Для обнаружения и устранения ошибок второго и третьего типа обычно применяют специальные способы и средства отладки программ.
Выявлению ошибок второго типа часто помогает использование контролирующих режимов компиляции с проверкой допустимых значений тех или иных параметров (границ индексов элементов массивов, значений переменных типа диапазона, ситуаций переполнения, ошибок ввода-вывода). Устанавливаются эти режимы с помощью ключей компилятора, задаваемых либо в программе, либо в меню Project/Options/Compiler среды Delphi, либо в меню Options/Compiler Турбо-среды.
Источник: megaobuchalka.ru