Протоколы – это набор правил и процедур, регулирующих порядок осуществления связи. Компьютеры, участвующие в обмене, должны работать по одним и тем же протоколам, чтобы в результате передачи вся информация восстанавливалась в первоначальном виде.
Связь сетевого адаптера с сетевым программным обеспечением осуществляют драйверы сетевых адаптеров. Именно благодаря драйверу компьютер может не знать никаких аппаратных особенностей адаптера (его адресов, правил обмена с ним, его характеристик). Драйвер унифицирует, делает единообразным взаимодействие программных средств высокого уровня с любым адаптером данного класса.
Сетевые драйверы, поставляемые вместе с сетевыми адаптерами, позволяют сетевым программам одинаково работать с платами разных поставщиков и даже с платами разных локальных сетей (Ethernet, Arcnet, Token-Ring и т.д.). Если говорить о стандартной модели OSI, то драйверы, как правило, выполняют функции канального уровня, хотя иногда они реализуют и часть функций сетевого уровня (рис. 1). Например, драйверы формируют передаваемый пакет в буферной памяти адаптера, читают из этой памяти пришедший по сети пакет, дают команду на передачу, информируют компьютер о приеме пакета.
Модель OSI | 7 уровней за 7 минут
Рис. 1. Функции драйвера сетевого адаптера в модели OSI
Качество написания программы драйвера во многом определяет эффективность работы сети в целом. Даже при самых лучших характеристиках сетевого адаптера некачественный драйвер может резко ухудшить обмен по сети.
Протоколы высоких уровней.
Существует несколько стандартных наборов (или, как их еще называют, стеков) протоколов, получивших сейчас широкое распространение:
- набор протоколов ISO/OSI;
- IBM System Network Architecture (SNA);
- Digital DECnet;
- Novell NetWare;
- Apple AppleTalk;
- набор протоколов глобальной сети Интернет, TCP/IP.
Включение в этот список протоколов глобальной сети вполне объяснимо, ведь, как уже отмечалось, модель OSI используется для любой открытой системы: на базе как локальной, так и глобальной сети или комбинации локальной и глобальной сетей. П
ротоколы перечисленных наборов делятся на три основных типа:
- Прикладные протоколы (выполняющие функции трех верхних уровней модели OSI – прикладного, представительского и сеансового);
- Транспортные протоколы (реализующие функции средних уровней модели OSI – транспортного и сеансового);
- Сетевые протоколы (осуществляющие функции трех нижних уровней модели OSI).
Прикладные протоколы обеспечивают взаимодействие приложений и обмен данными между ними. Наиболее популярны:
- FTAM (File Transfer Access and Management) – протокол OSI доступа к файлам;
- X.400 – протокол CCITT для международного обмена электронной почтой;
- Х.500 – протокол CCITT служб файлов и каталогов на нескольких системах;
- SMTP (Simple Mail Transfer Protocol) – протокол глобальной сети Интернет для обмена электронной почтой;
- FTP (File Transfer Protocol) – протокол глобальной сети Интернет для передачи файлов;
- SNMP (Simple Network Management Protocol) – протокол для мониторинга сети, контроля за работой сетевых компонентов и управления ими;
- Telnet – протокол глобальной сети Интернет для регистрации на удаленных серверах и обработки данных на них;
- Microsoft SMBs (Server Message Blocks, блоки сообщений сервера) и клиентские оболочки или редиректоры фирмы Microsoft;
- NCP (Novell NetWare Core Protocol) и клиентские оболочки или редиректоры фирмы Novell.
Транспортные протоколы поддерживают сеансы связи между компьютерами и гарантируют надежный обмен данными между ними. Наиболее популярные из них следующие:
- TCP (Transmission Control Protocol) – часть набора протоколов TCP/IP для гарантированной доставки данных, разбитых на последовательность фрагментов;
- SPX – часть набора протоколов IPX/SPX (Internetwork Packet Exchange/Sequential Packet Exchange) для гарантированной доставки данных, разбитых на последовательность фрагментов, предложенных компанией Novell;
- NWLink – реализация протокола IPX/SPX компании Microsoft;
- NetBEUI – (NetBIOS Extended User Interface, расширенный интерфейс NetBIOS) – устанавливает сеансы связи между компьютерами (NetBIOS) и предоставляет верхним уровням транспортные услуги (NetBEUI).
Сетевые протоколы управляют адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу. Широко распространены следующие из них:
- IP (Internet Protocol) – TCP/IP-протокол для негарантированной передачи пакетов без установления соединений;
- IPX (Internetwork Packet Exchange) – протокол компании NetWare для негарантированной передачи пакетов и маршрутизации пакетов;
- NWLink – реализация протокола IPX/SPX компании Microsoft;
- NetBEUI – транспортный протокол, обеспечивающий услуги транспортировки данных для сеансов и приложений NetBIOS.
Все перечисленные протоколы могут быть поставлены в соответствие тем или иным уровням эталонной модели OSI. Но при этом надо учитывать, что разработчики протоколов не слишком строго придерживаются этих уровней. Например, некоторые протоколы выполняют функции, относящиеся сразу к нескольким уровням модели OSI, а другие – только часть функций одного из уровней. Это приводит к тому, что протоколы разных компаний часто оказываются несовместимы между собой. Кроме того, протоколы могут быть успешно использованы исключительно в составе своего набора протоколов (стека протоколов), который выполняет более или менее законченную группу функций. Как раз это и делает сетевую операционную систему «фирменной», то есть, по сути, несовместимой со стандартной моделью открытой системы OSI. В качестве примера на рис. 2, рис. 3 и рис. 4 схематически показано соотношение протоколов, используемых популярными фирменными сетевыми операционными системами, и уровней стандартной модели OSI. Как видно из рисунков, практически ни на одном уровне нет четкого соответствия реального протокола какому-нибудь уровню идеальной модели. Выстраивание подобных соотношений довольно условно, так как трудно четко разграничить функции всех частей программного обеспечения. К тому же компании-производители программных средств далеко не всегда подробно описывают внутреннюю структуру продуктов. Рис. 2. Соотношение уровней модели OSI и протоколов сети Интернет
Рис. 3. Соотношение уровней модели OSI и протоколов операционной системы Windows Server
Рис. 4. Соотношение уровней модели OSI и протоколов операционной системы NetWare Рассмотрим некоторые наиболее распространенные протоколы. Модель OSI допускает два основных метода взаимодействия абонентов в сети:
- Метод взаимодействия без логического соединения (или метод дейтаграмм).
- Метод взаимодействия с логическим соединением.
Метод дейтаграмм – это простейший метод, в котором каждый пакет рассматривается как самостоятельный объект (рис. 5). Рис. 5. Метод дейтаграмм Пакет при этом методе передается без установления логического канала, то есть без предварительного обмена служебными пакетами для выяснения готовности приемника, а также без ликвидации логического канала, то есть без пакета подтверждения окончания передачи. Дойдет пакет до приемника или нет – неизвестно (проверка факта получения переносится на более высокие уровни). Метод дейтаграмм предъявляет повышенные требования к аппаратуре (так как приемник всегда должен быть готов к приему пакета). Достоинства метода в том, что передатчик и приемник работают независимо друг от друга, к тому же пакеты могут накапливаться в буфере и затем передаваться вместе, можно также использовать широковещательную передачу, то есть адресовать пакет всем абонентам одновременно. Недостатки метода – это возможность потери пакетов, а также бесполезной загрузки сети пакетами в случае отсутствия или неготовности приемника. Метод с логическим соединением (рис. 6, 7) разработан позднее, чем метод дейтаграмм, и отличается усложненным порядком взаимодействия.
Рис. 6. Метод с логическим соединением
Рис. 7. Пример обмена пакетами при сеансе связи При этом методе пакет передается только после того, как будет установлено логическое соединение (канал) между приемником и передатчиком. Каждому информационному пакету сопутствует один или несколько служебных пакетов (установка соединения, подтверждение получения, запрос повторной передачи, разрыв соединения). Логический канал может устанавливаться на время передачи одного или нескольких пакетов. Метод с логическим соединением, очевидно, более сложен, чем метод дейтаграмм, но гораздо надежнее, поскольку к моменту ликвидации логического канала передатчик уверен, что все его пакеты дошли до места назначения, причем дошли успешно. Не бывает при данном методе и перегрузки сети из-за бесполезных пакетов. Недостаток метода с логическим соединением состоит в том, что довольно сложно разрешить ситуацию, когда принимающий абонент по тем или иным причинам не готов к обмену, например, из-за обрыва кабеля, отключения питания, неисправности сетевого оборудования, сбоя в компьютере. При этом требуется алгоритм обмена с повторением неподтвержденного пакета заданное количество раз, причем важен и тип неподтвержденного пакета. Не может этот метод передавать широковещательные пакеты (то есть адресованные всем абонентам), так как нельзя организовать логические каналы сразу со всеми абонентами. Примеры протоколов, работающих по методу дейтаграмм— это протоколы IP и IPX. Примеры протоколов, работающих по методу с логическим соединением – это TCP и SPX. Именно для того, чтобы объединить достоинства обоих методов, эти протоколы используются в виде связанных наборов: TCP/IP и IPX/SPX, в которых протокол более высокого уровня (TCP, SPX), работающий на базе протокола более низкого уровня (IP, IPX), гарантирует правильную доставку пакетов в требуемом порядке. Протоколы IPX/SPX, разработанные компанией Novell, образуют набор (стек), используемый в сетевых программных средствах довольно широко распространенных локальных сетей Novell (NetWare). Это сравнительно небольшой и быстрый протокол, поддерживающий маршрутизацию. Прикладные программы могут обращаться непосредственно к уровню IPX, например, для посылки широковещательных сообщений, но значительно чаще работают с уровнем SPX, гарантирующим быструю и надежную доставку пакетов. Если скорость не слишком важна, то прикладные программы применяют еще более высокий уровень, например, протокол NetBIOS, предоставляющий удобный сервис. Компанией Microsoft предложена своя реализация протокола IPX/SPX, называемая NWLink. Протоколы IPX/SPX и NWLink поддерживаются операционными системами NetWare и Windows. Выбор этих протоколов обеспечивает совместимость по сети любых абонентов с данными операционными системами. Набор (стек) протоколов TCP/IP был специально разработан для глобальных сетей и для межсетевого взаимодействия. Он изначально ориентирован на низкое качество каналов связи, на большую вероятность ошибок и разрывов связей. Этот протокол принят во всемирной компьютерной сети Интернет, значительная часть абонентов которой подключается по коммутируемым линиям (то есть обычным телефонным линиям). Как и протокол IPX/SPX, протокол TCP/IP также поддерживает маршрутизацию. На его основе работают протоколы высоких уровней, такие как SMTP, FTP, SNMP. Недостаток протокола TCP/IP —более низкая скорость работы, чем у IPX/SPX. Однако сейчас протокол TCP/IP используется и в локальных сетях, чтобы упростить согласование протоколов локальных и глобальных сетей. В настоящее время он считается основным в самых распространенных операционных системах. В стек протоколов TCP/IP часто включают и протоколы всех верхних уровней (рис. 7). И тогда уже можно говорить о функциональной полноте стека TCP/IP.


Источник: studfile.net
Сети которые подключаются к интернету какие используют протоколы
Впервые понятие «протокол» было использовано в 1967 году Роджером Скэнтлбери и Китом Бартлеттом, которые опубликовали меморандум A Protocol for Use in the NPL Data Communications Network («Протокол об использовании в сети передачи данных NPL»). С того времени понятие протокола расширилось, а различных вариаций наборов соглашений для передачи данных уже сложно счесть. Часть из них осталась существовать лишь на «бумаге», но другие плотно вошли в современную жизнь человека.
Что такое протокол передачи данных
Протокол передачи данных — набор соглашений, позволяющий совершать обмен данными между различными компьютерами, сетями и программами.
Именно протоколы определяют способ передачи сообщений, обработки ошибок в сети и позволяют разрабатывать стандарты, которые не были бы привязаны к одной определенной аппаратной платформе. Сети, которые подключаются к интернету, используют для соединения протоколы.
Передача данных может осуществляться между двумя и более объектами системы. При каждом обмене различными сообщениями используется определенный формат обработки данных.
Каждое сообщение имеет точное значение, необходимое для получения определенного ответа из заранее сформированного ряда возможных ответов для конкретной ситуации. Поэтому протоколы для общения то же самое, что и алгоритмы для вычислений, ведь языки программирования описывают то же самое при совершении вычислений.
Каждый из протоколов должен быть согласован с теми, кто ими пользуется. Поэтому для достижения соглашения протокол внедряют в технические стандарты. Обработкой протоколов и форматов для сети занимаются различные целевые группы и организации: IETF, IEEE, ISO, МСЭ, ТСОП.
Разновидности сетевых протоколов
При рассмотрении работы интернета сеть рассматривается только в горизонтальной плоскости, обращая внимание только на верхние уровни и приложения. Но на самом деле установка соединения между двумя компьютерами требует взаимодействия множества вертикальных слоев и уровней.
Только из нескольких протоколов, которые работают друг поверх друга (в строгой иерархии), можно реализовать сетевое соединение. Каждый из слоев позволяет абстрагировать передаваемые данные, упрощая их для передачи на следующий уровень, чтобы в итоге приложение смогло выдать информацию в таком виде, котором ее может воспринимать человек.
Определено 7 уровней протоколов интернета модели ISO. Все они отличаются по используемому оборудованию, хотя передаются одни и те же данные, вид которых не изменяется.
Если с устройства отправителя файл проходит путь от 1 к 7 уровню, то со стороны получателя все слои будут представлены в обратном порядке.
Их совокупность является стеком сетевых протоколов. Как и в любой другой системе, они имеют свою иерархию, в которой уровни и представлены аналогично нижеприведенному списку. Каждый из них добавляет свою информацию к изначальному набору данных, чтобы новый уровень понимал, что именно необходимо делать с передаваемым пакетом.
7 уровней в соответствии с моделью OSI (Open System Interconnect), которые составляют весь путь информации из одного устройства на другое:
- Физический уровень — это физическая среда, где происходит обмен информацией. На этом уровне находятся хабы, ретрансляторы сигналов и медиаконвертеры. По проводам подается электрический импульс, который трансформируется в бинарный код, состоящий из единиц и нулей.
- Канальный уровень — передаваемая информация поступает на хост для ее обработки. Каждое устройство имеет свой MAC-адрес, который используется для однозначной идентификации. MAC-адрес состоит из 6 октетов, в которых собраны 12 шестнадцатеричных знаков. Здесь есть подуровень LLC, который необходим для обслуживания сетевого уровня.
- Сетевой уровень — для идентификации устройств используется IP-адрес, при помощи которого можно подключиться и получить статус уникальной единицы в глобальной сети. Главная задача уровня — доставить информацию до адресата. Вся получаемая информация передается в пакетах, которые далее отправляются на следующий уровень. Именно поэтому в различных онлайн-играх есть понятие Packet Loss — потеря пакетов, при которых игра начинает работать некорректно.
- Транспортный уровень — здесь уже происходит формирование полученной информации из пакетов в удобоваримый вид. Уровень следит, чтобы поступающие данные были в целостности. Для этого большие блоки данных фрагментируются или объединяются, в зависимости от настроек протокола. Сети, которые подключаются к интернету, используют для соединения протоколы транспортного уровня «точка-точка».
- Сессионный уровень — проводят проверку сеанса связи и наличие прав доступа на подключение к сессии, поддерживают его поток, синхронизируют начало и конец.
- Уровень представления — на этом этапе полученная информация декодируется и распаковывается, чтобы браузер или приложение могло обработать полученную информацию в понятный для себя вид. Здесь же информация кодируется и сжимается, когда данные отправляются в другую сторону. Тогда отправляемые данные превращаются в формат, удобный для помещения в пакеты.
- Прикладной уровень — регулируют взаимодействие сети и пользователя, позволяя приложениям обрабатывать, получать информацию и доступ к данным через файлы, БД и сетевые службы. Протоколы, которые задействуются здесь, называются высшими (HTML, FTP, POP3 и др.).
На каждом из уровней можно подключить свои протоколы, которые в связке друг с другом и позволяют информации перемещаться из одного устройства в другое, чтобы в итоге попасть к аппаратному обеспечению для ее отображения человеку.
Знакомство с миром стеков протоколов было начато с ICO неспроста. Ведь рассмотрев более подробную схему легче понять построение другой схемы, в которой одно различие — количество слоев.
При рассмотрении сетевой модели TCP/IP уровни работы сети представляются в более простом виде. Стек получил название по двум основным протоколам, ведь они являются основной для передачи информации в глобальной сети. Ее разработкой занималось Министерство обороны США, поэтому также можно услышать альтернативное название DoD (Department of Defence).
До появления интернет-протоколов пользователи не могли передать информацию из одной сети в другую. Поэтому все сети были изолированы друг от друга, не могли быть объединены во Всемирную.
Но в 1970-ых появился TCP/IP, где выделяют только 4 уровня:
- Приложения (прикладной уровень) — предоставляют большинству приложений услуги для обмена данными с протоколами, подключенными в нижних уровнях. Каждое из приложений может использовать свой уникальный протокол интернета (HTTP для гипертекста, SMTP для почты, FTP для файлов и т. д.).
- Транспорт (транспортный уровень) — выполняют саму доставку пакетов, выделяются протоколы TCP (протокол управления передачей) и UDP (протокол пользовательских датаграмм). TCP отличается надежностью, гарантирует, что информация будет передана в полном объеме. UDP ненадежен, во время транспортировки может быть потеряна часть данных, используется в играх, потоковой передаче видео.
- Интернет (межсетевой уровень) — позволяет объединить все локальные сети между собой в глобальный интернет через систему маршрутизации. Он регламентирует передачи данных внутри множества сетей, предоставляя возможность межсетевого взаимодействия при помощи магистральных и пограничных маршрутизаторов.
- Соединение (канальный уровень) — предназначен, чтобы давать описания происходящему обмену информацией на уровне сетевых устройств. Позволяет определить способ передачи данных от одного устройства к другому. Данные сортируются, кодируются и разбиваются на пакеты.
Интересным нюансом является то, что официальный стандарт RFC 1122 (именно на нем построен стек протоколов TCP/IP) включает в себя 4 уровня, хотя согласно учебникам (в особенности за авторством Э. Таненбаума) принято раскрывать 5 уровней, ведь также следует учитывать физический уровень, который и становится дополнительным. Но из-за того, что этот слой не считается официальным, рассматривать его стоит только при глубоком изучении тематики.
Какой является основным в сети интернет
Существует множество протоколов интернета и их назначение для передачи данных, которые получили широкое распространение. Каждый из них устанавливает собственные правила, синтаксис, семантику, синхронизацию связи и методы устранения ошибок. Протоколы могут реализовываться посредством аппаратного или программного обеспечения, или их комбинации.
IP (Internet Protocol) —определяет для каждого устройства уникальный IP-адрес, чтобы компьютеры могли найти друг друга в глобальной сети, протокол реализуется двумя способами: IPv4 и IPv6. Именно его часто нарекают «основным в сети», хотя такое утверждение правдиво лишь отчасти.
На самом деле одного основного протокола в сети интернет не существует. Работа по передачи данных является возможной только благодаря совмещению технологий, чтобы на каждом этапе выполнялась строго поставленная задача. Понять это можно, если рассматривать сеть в вертикальной плоскости, обращая внимание на каждый из уровней.
Назначения других протоколов
Работа интернета — это совместное использование множества протоколов. Чтобы понять, по какому протоколу осуществляется передача файлов в сети интернет, необходимо ознакомиться с кратким списком инструментов для глобальной сети:
- MAC (Media Access Control) — необходим для идентификации устройств в локальной сети, получая от каждого из них уникальный MAC-адрес, который есть у каждого компьютера, телефона;
- ICMP (Internet Control Message Protocol) — благодаря нему устройства могут обмениваться друг с другом информационными сообщениями и ошибками, используется для диагностики, данные не передает;
- TCP (Transmission Control Protocol) — работает аналогично ICMP, но передает именно данные, отличается высокой надежностью, несмотря на большое количество доступных путей, ведь после передачи информации она приводится к правильному порядку, только после этого отправляется в приложение;
- UDP (User Datagram Protocol) — похож на TCP, также является частью транспортного уровня, но предусматривает ненадежную передачу данных, при которой может быть потеряна часть данных, но отличается высокой скорость работы;
- HTTP (Hypertext Transfer Protocol) — запрашивает определенные ресурсы у удаленной системы, после чего формирует код в текст, понятный человеку, стандартный протокол сети интернет , обязательный на всех сайтах в интернете;
- FTP (File Transfer Protocol) — используется для передачи данных, работает с приложениями, отличается низкой безопасностью, поэтому не применяется для передачи важной личной информации;
- DNS (Domain Name System) — преобразует IP-адреса в простые для человеческого понимания доменные имена и наоборот, за счет чего можно ввести в поисковую строку адрес сайта и перейти на желаемую страницу;
- SSH (Secure Shell) — обеспечивает удаленное управление системой с использование защищенного канала.
На этом используемые нами протоколы не ограничиваются. Все они имеют свои преимущества и недостатки, что позволяет им выполнять определенные задачи, например, быстро передавать данные, но с их частичной потерей или создавать полностью защищенное соединение при помощи шифрования.
Автор Сергей Эльбакидзе
Сергей, 24 полных года. После окончания 9 классов школы, поступил в политехнический колледж на очное отделение, по специальности прикладная информатика. После окончания колледжа поступил в лесотехнический институт на заочное отделение, по той же специальности прикладная информатика, в данный момент на третьем курсе. Работал в компании специалистом по рекламе и сбыту, далее начал выполнять заказы по созданию и продвижению сайтов. В данный момент развиваю три своих информационных сайта.
Источник: itumnik.ru
Сетевые протоколы
Сетевой протокол — это набор правил, позволяющий осуществлять соединение и обмен данными между двумя и более включёнными в сеть компьютерами.Фактически разные протоколы зачастую описывают лишь разные стороны одного типа связи; взятые вместе, они образуют так называемый стек протоколов. Названия «протокол» и «стек протоколов» также указывают и на программное обеспечение, которым реализуется протокол.
Уровни протоколов
Наиболее распространённой системой классификации сетевых протоколов является так называемая модель OSI. В соответствии с ней протоколы делятся на 7 уровней по своему назначению — от физического (формирование и распознавание электрических или других сигналов) до прикладного (API для передачи информации приложениями):
Прикладной уровень, Application layer — Верхний (7-й) уровень модели, обеспечивает взаимодействие сети и пользователя. Уровень разрешает приложениям пользователя доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты. Также отвечает за передачу служебной информации, предоставляет приложениям информацию об ошибках и формирует запросы к уровню представления. Пример: HTTP, POP3, SMTP.
Уровень представления, Presentation layer — 6-й уровень отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На уровне представления может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.
Сеансовый уровень, Session layer — 5-й уровень модели отвечает за поддержание сеанса связи, что позволяет приложениям взаимодействовать между собой длительное время. Сеансовый уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.
Транспортный уровень, Transport layer — 4-й уровень модели, предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом неважно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Протоколы этого уровня предназначены для взаимодействия типа точка-точка. Пример: TCP, UDP.
Сетевой уровень, Network layer — 3-й уровень сетевой модели OSI, предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор.
Канальный уровень, Data Link layer — этот уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Данные, полученные с физического уровня, он упаковывает во фреймы, проверяет на целостность, если нужно исправляет ошибки и отправляет на сетевой уровень.
Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня — MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня. На этом уровне работают коммутаторы, мосты. В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS.
Физический уровень, Physical layer — самый нижний уровень модели, предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и соответственно их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.
Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством. На этом уровне работают концентраторы (хабы), повторители (ретрансляторы) сигнала и медиаконверторы. Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.
В основном используются протокол TCP/IP
Transmission Control Protocol/Internet Protocol, TCP/IP (Протокол управления передачей/Протокол Интернета)
Большинство операционных систем сетевых серверов и рабочих станций поддерживает TCP/IP, в том числе серверы NetWare, все системы Windows, UNIX, последние версии Mac OS, системы OpenMVS и z/OS компании IBM, а также OpenVMS компании DEC. Кроме того, производители сетевого оборудования создают собственное системное программное обеспечение для TCP/IP, включая средства повышения производительности устройств. Стек TCP/IP изначально применялся на UNIX-системах, а затем быстро распространился на многие другие типы сетей.
Протоколы локальных сетей
- IPX/SPX;
- NetBEUI;
- AppleTalk;
- TCP/IP;
- SNA;
- DLC;
- DNA;
Свойства протоколов локальной сети
В основном протоколы локальных сетей имеют такие же свойства, как и Другие коммуникационные протоколы, однако некоторые из них были разработаны давно, при создании первых сетей, которые работали медленно, были ненадежными и более подверженными электромагнитным и радиопомехам. Поэтому для современных коммуникаций некоторые протоколы не вполне пригодны. К недостаткам таких протоколов относится слабая защита от ошибок или избыточный сетевой трафик. Кроме того, определенные протоколы были созданы для небольших локальных сетей и задолго до появления современных корпоративных сетей с развитыми средствами маршрутизации.
Протоколы локальных сетей должны иметь следующие основные характеристики:
- обеспечивать надежность сетевых каналов;
- обладать высоким быстродействием;
- обрабатывать исходные и целевые адреса узлов;
- соответствовать сетевым стандартам, в особенности — стандарту IEEE 802.
В основном все протоколы, рассматриваемые в этой главе, соответствуют перечисленным требованиям, однако, как вы узнаете позднее, у одних протоколов возможностей больше, чем у других.
В таблице перечислены протоколы локальных сетей и операционные системы, с которыми эти протоколы могут работать. Далее в главе указаны протоколы и системы (в частности, операционные системы серверов и хост компьютеров) будут описаны подробнее.
Таблица Протоколы локальных сетей и сетевые операционные системы
Соответствующая операционная система
Источник: www.bourabai.ru