Руководство по программе компас

Предварительная настройка системы. Анализ и планирование детали. Создание файла детали. Работа в режиме эскиза. Параметризация в эскизах. Простановка размеров в эскизах. Операция выдавливания. Управление ориентацией модели. Построение отверстий. Создание зеркального массива.

Отмена и повтор действий. Добавление скруглений. Расчёт массово-центровочных характеристик детали. Рассечение модели плоскостями. Простановка размеров и обозначений в трёхмерной модели. Слои.

Технические требования в модели.

Тема 2. Создание рабочего чертежа.

Выбор ориентации для главного вида. Создание и настройка чертежа. Создание стандартных видов. Компоновка чертежа. Проекционные связи. Создание разреза. Создание выносного элемента.

Текстовые ссылки. Простановка размеров. Простановка технологических обозначений. Оформление технических требований. Заполнение основной надписи.

Вывод документа на печать.

Тема 3. Создание сборочной единицы.

Планирование сборок. Определение свойств сборки. Выбор материала детали из библиотеки «Материалы и сортаменты». Добавление компонента из файла. Вставка компонента по координатам и по опорной точке. Перемещение и вращение компонентов. Сопряжения компонентов.

КОМПАС-3D Viewer (Руководство по программе)

Защита детали- установка пароля на доступ.

Тема 4. Создание сборки изделия.

Добавление деталей и сборок. Размещение компонентов по сопряжениям. Типы загрузки компонентов. Обозначения позиций в сборках. Создание разнесённых видов.

Проверка пересечений.

Тема 5. Создание компонента в контексте сборки.

Дополнительный способ работы «Создание геометрии в контексте сборки». Выбор плоскости для создания компонента. Сопряжение «Совпадение». Проецирование объектов. Выдавливание без эскиза. Создание ребра жёсткости. Привязка к проекциям объектов модели. Редактирование компонента на месте и в окне. Построение отверстий с помощью библиотеки «Стандартные изделия».

Создание массива по сетке.

Тема 6. Добавление стандартных изделий.

Общие сведения о библиотеке «Стандартные изделия». Добавление в сборку крепёжных элементов. Создание массива по образцу. Слои в моделях сборок. Сечения модели.

Зоны.

Тема 7. Создание сборочного чертежа сборочной единицы.

Удаление и погашение вида. Разрыв проекционных связей между видами. Простановка размеров с посадками, обозначениями квалитетов и предельных отклонений. Использование Справочника кодов и наименований документов.

Тема 8. Создание сборочного чертежа изделия.

Авторасстановка позиций. Исключение компонентов из разреза или сечения. Работа с деревом чертежа. Штриховка. Создание местного вида.

Тема 9. Создание спецификаций.

Стиль спецификации. Настройка спецификации. Создание спецификаций. Подключение к спецификации сборочного чертежа. Подключение позиционных линий-выносок. Синхронизация документов. Объекты спецификации. Создание раздела «Документация».

Оформление основной надписи.

Компас для чайников

КОМПАС-3D. Трехмерное моделирование деталей и сборочных единиц в системе КОМПАС-3D

Тема 10. Тела вращения.

Эскиз тела вращения. Создание тела вращения. Вращение без эскиза. Приложение «Валы и механические передачи»

Тема 11. Кинематические элементы и пространственные кривые.

Общие сведения о пространственных кривых и точках. Построение пространственной ломаной по точкам и по осям, параллельно и перпендикулярно объектам. Редактирование пространственной ломаной. Построение плоскости через вершину параллельно другой плоскости. Создание кинематического элемента.

Зеркальное отражение тел. Создание разрыва вида.

Тема 12. Элементы по сечениям.

Использование буфера обмена при создании эскизов. Условное пересечение объектов. Построение элемента по сечениям. Построение паза. Библиотека эскизов.

Построение элемента по сечениям с осевой линией.

Тема 13. Листовые детали.

Листовое тело и листовая деталь. Предварительная настройка листового тела. Создание листового тела. Сгибы по эскизу. Сгибы по ребру. Копирование свойств.

Сгибы в подсечках. Управление углом сгибов. Добавление сгибов с отступами. Управление боковыми сторонами сгибов. Построение вырезов.

Плоская параметрическая симметрия. Создание штамповок, буртиков, жалюзи. Создание массива по точкам эскиза. Создание чертежа с видом развёртки. Построение обечайки.

Тема 14. Построение 3D-моделей на основе плоских чертежей.

Использование буфера обмена. Автоматическая параметризация эскизов. Ручная параметризация эскизов.

Тема 15. Пользовательские библиотеки моделей.

Создание пользовательской библиотеки и её структуры. Добавление моделей в библиотеку. Редактирование библиотечных моделей. Вставка библиотечных моделей в сборку. Внешние переменные и таблицы переменных в библиотечных моделях.

Тема 16. Зеркальное отражение компонентов.

На примере сборки Шасси будет показана возможность вставки в сборку компонентов, зеркально симметричных имеющимся или симметрично расположенных относительно имеющихся.

КОМПАС-3D. Трехмерное моделирование деталей и сборочных единиц в системе КОМПАС-3D

Тема 17. Методики проектирования в КОМПАС-3D.

Методика «Снизу вверх с размещением компонентов». Методика «Снизу вверх с предварительной компоновкой». Методика «Сверху вниз с преобразованием тел в компоненты». Методика «Сверху вниз с предварительной компоновкой». Дополнительные способы работы.

Тема 18. Коллективная работа над сборкой.

Создание Компоновочной геометрии. Создание локальных систем координат движущихся компонентов. Окончательная проверка Компоновочной геометрии. Проверка Компоновочной геометрии. Определение структуры изделия. Создание коллекций. Создание файла финальной сборки. Добавление Компоновочной геометрии. Размещение моделей компонентов в сборке.

Читайте также:
Ubuntu установка программ deb

Распределение работ. Создание и настройка Типов загрузки. Проектирование компонентов. Контроль результатов разработки.

Заключительная часть.

Подведение итогов. Ответы на вопросы. Вручение удостоверений. Информация по дополнительным курсам, Системе сертификации специалистов.

Источник: www.cad-is.ru

Урок 9. Сборка в Компас 3d

3 апреля, 2014 Анна Веселова

sborka v kompas 3d

kursy kompas 3d v20

Здравствуйте друзья! Как и обещала вам на прошлом уроке, сегодня займемся созданием сборки в Компас 3d резьбовых соединений болтом, винтом и гайкой.

Сборка в Компас 3d

Перед созданием сборки необходимо сделать 3d модели всех деталей, входящих в нее.

У нас это детали: основание, планка и пластина. Модели стандартных изделий создавать не будем, т. к. они уже есть в библиотеке Компаса.

Процесс создания моделей деталей я здесь описывать не буду, они достаточно легкие в исполнении.

Если не хотите вычерчивать их самостоятельно, можете скачать их тут.

Итак, последовательность создания сборки в Компас 3d.

1 Создаем файл сборки: Файл→Создать→Сборка .

Сохраняем ее под именем «Сборка резьбовых соединений».

2 Устанавливаем изометрию XYZ.

3 На компактной панели активизируем инструментальную панель Редактирование сборки . Нажимаем кнопку Добавить из файла .

В появившемся окошке нажимаем кнопку Из файла и находим деталь Основание.

Фантомное изображение детали размещаем в центре координатных осей и фиксируем левой кнопкой мыши в момент, когда рядом с курсором появится изображение системы координат.

dobavlenie detali s sborku

4 Таким же образом добавляем следующую деталь Планку. Размещаем ее в свободном месте.

dobavlenie detali s sborku 2

5. Теперь нам необходимо совместить планку с основанием. Делается это сопряжением деталей.

В нашем случае разумно применить сопряжение по соосности отверстий в планке и основании, чтобы планка встала точно над основанием. А затем применить сопряжение на совпадение деталей, т. е. «притянуть» планку к основанию.

Чтобы задать сопряжение по соосности нужно перейти в инструментальную панель Сопряжения , нажать на кнопку Соосность .

Далее выделяем поверхность отверстия в планке и основании. Сопряжение деталей выполнено.

soosnostj sopryazhenie

soosnostj sopryazhenie1

Теперь можно выполнять сопряжение деталей по совпадению. Нажимаем кнопку Совпадение объектов . Выделяем мышкой нижнюю грань планки и верхнюю грань основания. Для этого поворачиваем модели.

sovpadenie sopryazhenie

6 Таким же образом поступаем и с пластиной. Сначала задаем соосность одного из отверстий в пластине и основании, а затем совпадение объектов.

sovpadenie plastinih

Вот, что получается в результате.

zagotovka sborki

7 Теперь последовательно вставляем в сборку болтовое соединение, винт и шпилечное соединение.

Читайте о том, как сделать профильную резьбу в Компасе

Не забываем отключать галочку создания объекта спецификации.

7.1 Нажимаем Библиотеки→Стандартные изделия→Вставить элемент→Крепежные изделия . Находим нужный болт, задаем его параметры и нажимаем Применить.

Немного разворачиваем сборку и задаем сопряжение соосности стержня болта и отверстия в основании (1) и совпадение плоскости основания и головки болта (2). Болт зафиксирован.

soosnostj bolta

7.2 Аналогично вставляем шайбу, задав соосность отверстия в шайбе с стержнем болта и совпадение поверхности основания с шайбой.

soosnostj shayjbih

7.3 Вставляем последний элемент соединения – гайку.

soosnostj gayjki

8 Добавляем в сборку винт. Задаем соосность стержня винта с отверстием в основании и совпадение с «дном» отверстия диаметром 12,5 мм.

sopryazhenie vinta

9 Вставляем шпилечное соединение.

9.1 Соосность шпильки с отверстием в планке. Совпадение с верхней гранью основания ! Для этого максимально увеличиваем изображения и выбираем маленький кусочек поверхности основания. Теперь шпилька ввинчиваемым концом полностью находится в отверстии основания.

sopryazhenie shpiljki

9.2 Добавляем шайбу и гайку.

sopryazhenie gayjki i shayjbih

Вот и все – наша первая сборка в Компас 3d готова. Теперь можно создавать на ее основе ассоциативный чертеж, делать разрезы и т. д.

Также советую почитать о том, как разнести трехмерную сборку («раздвинуть» составляющие компоненты) и сделать вырез 1/4 на сборке.

Если вам необходимо создать спецификацию к чертежу читайте статью к уроку 17 по 2d моделированию.

Традиционный видеоурок — Сборка в Компас 3d.

Скачать детали и файл сборки бесплатно можно здесь.

Таковы основы создания сборок в Компас 3d.

Источник: veselowa.ru

Моделирование корпуса судна в САПР КОМПАС 3D

Татьяна Горавнева, к.т.н., доцент кафедры вычислительной техники и информационных технологий, Санкт-Петербургский государственный морской технический университет
Татьяна Горавнева,
к.т.н., доцент кафедры вычислительной техники и информационных технологий, Санкт-Петербургский государственный морской технический университет
Вера Семенова-Тян-Шанская, к.т.н., доцент кафедры вычислительной техники и информационных технологий, Санкт-Петербургский государственный морской технический университет
Вера Семенова-Тян-Шанская,
к.т.н., доцент кафедры вычислительной техники и информационных технологий, Санкт-Петербургский государственный морской технический университет

В статье обсуждаются решения задач, связанных с возможностями автоматизированной системы КОМПАС 3D по геометрическому моделированию судостроительных объектов — поверхностей корпуса судна. Приведены средства автоматизации при построении теоретического чертежа судна, основанные на использовании автоматизированного способа построения сплайнов на базе точек, введенных из заранее созданного файла. Такой способ резко снижает трудоемкость построения и позволяет при необходимости изменения координат быстро выполнить перестроение кривых в теоретическом чертеже. Рассмотрены способы моделирования корпуса судна: на основе плоских кривых — сплайнов, построенных на различных смещенных плоскостях по таблично заданным ординатам теоретического чертежа; с помощью пространственных кривых, координаты которых совпадают с координатами обводов судна. Выполнена практическая реализация методов моделирования трехмерных моделей корпусов судов.

Читайте также:
Как запустить программу через скрипт

В системах автоматизированного проектирования могут обрабатываться трехмерные модели, информация о геометрических параметрах которых может использоваться не только для графической визуализации модели, но и для получения различных расчетов и подготовки программ с числовым программным управлением (ЧПУ). В связи с этим исследование возможностей системы КОМПАС 3D для геометрического моделирования судостроительных объектов — поверхностей корпуса судна — является современной и актуальной практической задачей.

В процессе решения данной задачи были рассмотрены:

  • средства автоматизации при построении теоретического чертежа судна;
  • способы моделирования корпуса судна на основе теоретического чертежа.

Моделирование проекций корпуса трехмерных моделей судов

Цель задачи — на основе имеющегося теоретического чертежа выполнить проектирование в трехмерном режиме работы КОМПАС 3D электронной модели корпуса судна.

Система КОМПАС 3D позволяет создавать криволинейные поверхности (грани) различными способами [1]. Эти способы основаны на применении построений пространственных точек, кривых, поверхностей, а затем придании толщины для создания объемной твердотельной модели, так как смоделированные поверхности не имеют толщины. Можно также применить к построенным контурам твердотельную операцию По сечениям или По траектории, так как именно данные операции также создают криволинейные грани, которые характерны для корпусов судов.

Рассмотрим и затем применим разные способы построения криволинейных граней для дальнейшего анализа возможности использования их в моделировании электронных моделей корпусов судов.

1 Использование шпангоутов:

  • на основе пространственных кривых — сплайнов, построенных по таблично заданным ординатам теоретического чертежа;
  • на основе плоских кривых — сплайнов, построенных на различных смещенных плоскостях (шпациях) по таблично заданным ординатам теоретического чертежа.

2 Использование ватерлиний:

  • на основе пространственных кривых — сплайнов, построенных по таблично заданным ординатам теоретического чертежа;
  • на основе плоских кривых — сплайнов, построенных на различных смещенных плоскостях, соответствующих ватерлиниям, по таблично заданным ординатам теоретического чертежа.

В качестве исходных данных для построения электронной модели корпуса был взят теоретический чертеж и его ординаты из учебного пособия [2].

Для построения кривых шпангоутов и ватерлиний теоретического чертежа были проделаны вспомогательные расчеты с использованием программы офисного приложения Microsoft Excel 2016.

Для построения шпангоутов данные расчетов представлены в виде отдельных столбцов (ординаты Y, аппликаты Z) для каждого шпангоута от 0 до 11. Для каждого шпангоута был сохранен отдельный файл.

Создание теоретического чертежа в системе КОМПАС 3D подробно рассмотрено в учебном пособии СПбГМТУ [3]. Построение основано на использовании графических объектов — сплайнов путем ввода вручную характерных точек с координатами X, Y на плоскости.

В данной работе была использована другая методика — автоматизированный способ построения сплайнов на базе точек, введенных из заранее созданного файла. Такой способ резко снижает трудоемкость построения и при необходимости изменения координат позволяет быстро выполнить перестроение кривых в теоретическом чертеже.

Известно, что при построении сплайновых кривых по точкам/по полюсам или кривой Безье можно вводить вершины по числовым координатам, читая их из файла [4, 5].

Файлом исходных данных может быть текстовый неформатированный файл, в котором имеются столбцы чисел — координат X, Y вершин кривой.

Другой важной особенностью построения сплайнов является возможность, не изменяя координат вершин, менять наклон с помощью варьирования касательной в узловой точке. Это позволит при построении шпангоутов для плоскодонных судов более плавно перейти к днищу, так как некоторые шпангоуты не заканчиваются в точке 0,0.

Рис. 1. Файл — фрагмент проекции Корпус теоретического чертежа

Рис. 1. Файл — фрагмент проекции
Корпус теоретического чертежа

Алгоритм построения проекции Корпус теоретического чертежа (рис. 1):

  1. Создаем новый фрагмент.
  2. Чертим вспомогательные прямые.
  3. Выбираем команду Сплайн по точкам.
  4. Читаем из файла Excel таблицу вершин 0­го шпангоута.
  5. Проверяем правильность построения на фантоме кривой. При необходимости изменяем кривизну кривой способом по касательности.
  6. Завершаем построение кривой шпангоута.
  7. Читаем значения вершин из следующего файла шпангоута и повторяем процедуру для остальных шпангоутов от 1 до 10.
  8. Окончательно завершаем формирование проекции Корпус теоретического чертежа.
Читайте также:
Программы дополнительного образования детей пример

Для построения кривых ватерлиний в проекции Полуширота также будем вводить вершины по числовым координатам, читая их из файла.

Для построения ватерлиний данные расчетов представлены в виде отдельных столбцов (абсциссы X, ординаты Y) для каждой ватерлинии от 0 до 9. Для каждой ватерлинии был сохранен отдельный файл. Добавочные строки в начале и конце каждого файла были получены с помощью значений абсцисс носа и кормы таблицы ординат теоретического чертежа.

Рис. 2. Файл — фрагмент теоретического чертежа проекции Полуширота

Рис. 2. Файл — фрагмент теоретического чертежа проекции Полуширота

Алгоритм построения проекции Полуширота теоретического чертежа с ватерлиниями, представленной на рис. 2:

  1. Создаем новый фрагмент.
  2. Чертим вспомогательные прямые.
  3. Выбираем команду Сплайн по точкам.
  4. Читаем из файла Excel таблицу вершин 0­й ватерлинии.
  5. Проверяем правильность построения на фантоме кривой. При необходимости изменяем кривизну кривой способом по касательности.
  6. Завершаем построение кривой ватерлинии.
  7. Читаем значения вершин из следующего файла ватерлинии и повторяем процедуру для каждой из ватерлиний 1­9.
  8. Окончательно завершаем формирование проекции Полуширота теоретического чертежа с ватерлиниями.

Построение электронной модели корпуса судна

Чтобы применить полученные проекции теоретического чертежа в моделировании электронной детали корпуса судна, можно воспользоваться следующими способами:

  • на основе плоских кривых — сплайнов, построенных на различных смещенных плоскостях (шпациях) по таблично заданным ординатам теоретического чертежа;
  • на основе пространственных кривых — сплайнов, построенных по таблично заданным ординатам теоретического чертежа.

В первом случае алгоритм построения выглядит следующим образом:

  1. Создаем новую деталь.
  2. Выполняем построение нескольких вспомогательных плоскостей, смещенных на расстоянии шпации друг от друга.
  3. Выделяем первую плоскость. Переходим в режим создания эскиза. Копируем из файла — фрагмента теоретического чертежа 0­й шпангоут и вставляем его в эскиз. Завершаем эскиз и переходим в режим детали.
  4. Выделяем 2­ю плоскость и повторяем построения в пунктах 4­6. Аналогично выполняем построения для остальных шпангоутов.
  5. В результате получаем серию плоских кривых, расположенных на разных плоскостях.
  6. Выбираем команду Поверхность по сечениями указываем построенные эскизы. По завершении команды получаем поверхность корпуса одного борта судна.
  7. Выбираем команду Зеркальное отражение и моделируем второй борт (рис. 3).

Рис. 3. Корпус с эскизами-шпангоутами

Рис. 3. Корпус с эскизами-шпангоутами

При построении по данному способу часть корпуса оказывается недостроенной, так как нет ни промежуточных носовых и кормовых шпангоутов, ни эскиза оконечностей.

Поэтому для завершения процесса построения необходимо применить второй способ — построить пространственные шпангоуты, а также учесть пространственные оконечности форштевня и ахтерштевня.

Поскольку сплайны шпангоутов уже построены в соответствующих эскизах, нет необходимости повторять данные построения. Как показали практические построения, 0­й и 10­й шпангоуты будут ухудшать процесс моделирования поверхности, поэтому далее их учитывать не будем. А вместо них задействуем новые кривые — форштевень и ахтерштевень.

Действуем по следующему алгоритму:

  1. Отменяем построение поверхности по сечениям.
  2. Выполняем команду Сплайн по объекту и указываем 1­й шпангоут.
  3. Аналогично строим пространственные сплайны по объекту для 2­9­го шпангоутов.
  4. Для построения пространственного сплайна носовой оконечности сначала подготавливаем файл в электронных таблицах Excel. В табличной форме в столбцах располагаются значения координат X, Z (Y=0). Аналогично готовим и сохраняем файл кормовой оконечности.
  5. На диаметральной плоскости создаем эскиз. Вызываем команду Сплайн по точкам, читаем числовые данные из файла носовой оконечности. Завершаем эскиз.
  6. На диаметральной плоскости создаем новый эскиз. Вызываем команду Сплайн по точкам, читаем числовые данные из файла кормовой оконечности. Завершаем эскиз.
  7. Выполняем команду Сплайн по объекту и указываем форштевень, а затем и ахтерштевень.
  8. Выполняем команду Поверхность по сети кривых, последовательно указывая носовую оконечность, 1­9­й шпангоуты, а затем и сплайн в кормовой части.
  9. Полученный первый борт корпуса зеркально отражаем (рис. 4).

Рис. 4. Поверхность корпуса с пространственными сплайнами-шпангоутами

Рис. 4. Поверхность корпуса с пространственными сплайнами-шпангоутами

Заключение

На основе выполненных практических приемов построения следует отметить, что несмотря на сложную форму судостроительной поверхности, система автоматизированного проектирования КОМПАС 3D позволяет проектировать электронную модель корпуса судна для наглядного представления его формы и размеров. Такое проектирование можно проводить с использованием пространственных кривых и поверхностей разного типа.

Однако вопрос использования системы КОМПАС 3D для реального проектирования судовой поверхности остается открытым.

Литература:

  • КОМПАС
  • 3d
  • трехмерное моделирование
  • корпус судна
  • теоретический чертеж
  • автоматизация построения
  • пространственные кривые
  • поверхности
  • практическая реализация
  • Санкт-Петербургский государственный морской технический университет

Источник: sapr.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru