Регистры
Регистр — это определенный участок памяти внутри самого процессора, от 8-ми до 32-х бит длиной, который используется для промежуточного хранения информации, обрабатываемой процессором. Некоторые регистры содержат только определенную информацию.
Регистры общего назначения — EAX, EBX, ECX, EDX. Они 32-х битные и делятся еще на две части, нижние из которых AX, BX, CD, DX — 16-ти битные, и деляется еще на два 8-ми битных регистра. Так, АХ делится на AH и AL, DX на DH и DL и т.д. Буква «Н» означает верхний регистр.
Так, AH и AL каждый по одному байту, АХ — 2 байта (или word — слово), ЕАХ — 4 байта (или dword — двойное слово). Эти регистры используются для операций с данными, такими, как сравнение, математические операции или запись данных в память.
Регистр СХ чаще всего используется как счетчик в циклах.
АН в DOS программах используется как определитель, какой сервис будет использоваться при вызове INT.
Регистры сегментов — это CS, DS, ES, FS, GS, SS. Эти регистры 16-ти битные, и содержат в себе первую половину адреса «оффсет:сегмент».
Регистры, общая характеристика
- CS — сегмент кода (страница памяти) исполняемой в данный момент программы.
- DS — сегмент (страница) данных исполняемой программы, т.е. константы, строковые ссылки и т.д.
- SS — сегмент стека исполняемой программы.
- ES, FS, GS — дополнительные сегменты, и могут не использоваться программой.
Регистры оффсета — EIP, ESP, EBP, ESI, EDI. Эти регистры 32-х битные, нижняя половина которых доступна как регистры IP, SP, BP, SI, DI.
- EIP — указатель команд, и содержит оффсет (величину смещения относительно начала программы) на линию кода, которая будет исполняться следующей. То есть полный адрес на следующую исполняемую линию кода будет CS:ЕIP.
- Регистр ESP указывает на адрес вершины стека (адрес, куда будет заноситься следующая переменная командой PUSH).
- Регистр ЕВР содержит адрес, начиная с которого в стек вносится или забирается информация (или «глубина» стека). Параметры функций имеют положительный сдвиг относительно ЕВР, локальные переменные — отрицательный сдвиг, а полный адрес этого участка памяти будет SS:EBP.
- Регистр ESI — адрес источника, и содержит адрес начала блока информации для операции «переместить блок» (полный адрес DS:SI), а регистр EDI- адрес назначения в этой операции (полный адрес ES:EDI).
Регистры управления — CR0, CR1, CR2, CR3. Эти 32-х битные регистры устанавливают режим работы процессора (нормальный, защищенный и т.д.), постраничное распределение памяти и т.д. Они доступны только для программ в первом кольце памяти (Kernel, например). Трогать их не следует.
Регистры дебаггера — DR0, DR1, DR2, DR3, DR4, DR5, DR6, DR7. Первые четыре регистра содержат адреса на точки прерывания, остальные устанавливают, что должно произойти при достижении точки прерывания.
Контрольные регистры — TR6, TR7. Используются для контроля постраничной системы распределения памяти операционной системой. Нужны только если вы собираетесь написать свою ОС.
#6. Что такое регистры и прерывания / 2. Введение в ассемблер / Программирование с нуля
Источник: codenet.ru
Регистры процессора: сущность, назначение, типы.
Регистр процессора — сверхбыстрая оперативная память внутри процессора, предназначенная прежде всего для хранения промежуточных результатов вычисления.
По типу приёма и выдачи информации различают 2 типа регистров:
- С последовательным приёмом и выдачей информации — сдвиговые регистры.
- С параллельным приёмом и выдачей информации — параллельные регистры.
По назначению регистры различаются на:
- аккумулятор — используется для хранения промежуточных результатов арифметических и логических операций и инструкций ввода-вывода;
- флаговые — хранят признаки результатов арифметических и логических операций;
- общего назначения — хранят операнды арифметических и логических выражений, индексы и адреса;
- индексные — хранят индексы исходных и целевых элементов массива;
- указательные — хранят указатели на специальные области памяти (указатель текущей операции, указатель базы, указатель стека);
- сегментные — хранят адреса и селекторы сегментов памяти;
· управляющие — хранят информацию, управляющую состоянием процессора, а также адреса системных таблиц.
Начиная с 80386 процессоры Intel предоставляют 16 основных регистров для пользовательских программ плюс еще 11 регистров для работы с мультимедийными приложениями (MMX(Multimedia Extension)) и числами с плавающей запятой (FPU/NPX (Float Point Unit / Numerical Processor Extension)). Все команды так или иначе изменяют значения регистров, и всегда быстрее и удобнее обращаться к регистру, чем к памяти.
Из реального (но не из виртуального) режима помимо основных регистров доступны так же регистры управления памятью (GDTR, IDTR, TR, LDTR), регистры управления (CR0, CR1 – CR4), отладочные регистры (DR0 – DR7) и машинно-специфичные регистры, но они не применяются для решения повседневных задач.
Регистры общего назначения.
32-битные регистры EAX (аккумулятор), EBX (база), ECX (счетчик), EDX (регистр данных) могут использоваться без ограничений для любых целей – временного хранения данных, аргументов или результатов различных операций. Название регистров происходят от того, что некоторые команды применяют их специальным образом: так, аккумулятор часто необходим для хранения результата действий, выполняемых над двумя операндами, регистр данных в этих случаях получает старшую часть результата, если он не умещается в аккумулятор, регистр счетчик работает как счетчик в циклах и строковых операциях, а регистр-база – при так называемой адресации по базе.
Младшие 16 бит каждого их этих регистров применяются как самостоятельные регистры с именами AX, BX, CX, DX. На самом деле в процессорах 8086-80286 все регистры были 16-битными и назывались именно так, а в 32-битные EAX-EDX появились с введением 32-битной архитектуры в 80386. Кроме этого, отдельные байты в 16-юитных регистрах AX – DX тоже могут использоваться как 8-битные регистры и иметь свои имена. Старшие байты этих регистров называются AH, BH, CH, DH, а младшие – AL, BL, CL, DL.
Остальные четыре регистра – ESI (индекс источника), EDI (индекс приемника), EBP (указатель базы), ESP (указатель стека) — имеют более конкретное назначение и применяются для хранения всевозможных временных переменных. Регистры ESI и EDI необходимы в строковых операциях, EBP и ESP – при работе со стеком. Так же как в случае с регистрами EAX – EDX, младшие половины этих четырех регистров называются SI, DI, BP и SP соответственно, и в процессорах до 80386 только они и присутствовали.
(Регистры общего назначения)
Сегментные регистры.
При использовании сегментированных моделей памяти для формирования любого адреса нужны два числа – адрес начала сегмента и смещение искомого байта относительно этого начала (в бессегментной модели памяти flat адреса начала всех сегментов равны). Операционные системы (кроме DOS) могут размещать сегменты, с которыми работает программа пользователя, в разных местах памяти и даже временно записывать их на диск, если памяти не хватает. Так как сегменты способны оказаться где угодно, программа обращается к ним, применяя вместо настоящего адреса начала сегмента 16-битное число, называемое селектором. В процессорах Intel предусмотрены шесть 16-битных регистров – CS, DS, ES, FS, GS, SS, где хранятся селекторы. Это означает, что в любой момент можно изменить параметры, записанные в этих регистрах.
В отличие от DS, ES, GS, FS, которые называются регистрами сегментов данных, CS и SS отвечают за сегменты двух особенных типов – сегмента кода и сегмент стека. Первый содержит программу, исполняющуюся в данный момент, следовательно, запись нового селектора в этот регистр приводит к тому, что далее будет исполнена не следующая по тексту программы команда, а команда из кода, находящегося в другом сегменте, с тем же смещением. Смещение очередной выполняемой команды всегда хранится в специальном регистре EIP (указатель инструкции, 16-битная форма IP), запись в который также приведет к тому, что далее будет исполнена какая-нибудь другая команда. На самом деле все команды передачи управления – перехода, условного перехода, цикла, вызова подпрограммы и т. п. – и осуществляют эту самую запись в CS и EIP.
Стек.
Стек – организованный специальным образом участок памяти, который используется для временного хранения переменных, передачи параметров вызываемым подпрограммам и сохранения адреса возврата при вызове процедур и прерываний. Легче всего представить стек в виде стопки листов бумаги (это одно из значений слова «stack» в английском языке) – вы можете класть и забирать листы только с вершины стопки.
Поэтому, если записать в стек числа 1, 2, 3, то при чтении они окажутся в обратном порядке – 3, 2, 1. Стек располагается в сегменте памяти, описываемом регистром SS, и текущее смещение вершины стека отражено в регистре ESP, причем во время записи значение этого смещения уменьшается, то есть он «растет вниз» от максимально возможного адреса. Такое расположение стека «вверх ногами» может быть необходимым, к примеру, в бессегментной модели памяти, когда все сегменты, включая сегменты стека и кода, занимают одну и туже область – память целиком. Тогда программа исполняется в нижней области памяти, в области малых адресов, и EIP растет, а стек располагается в верхней области памяти, и ESP уменьшается. При вызове подпрограммы параметры в большинстве случаев помешают в стек, а в EBP записывают текущее значение ESP. Если подпрограмма использует стек для хранения локальных переменных, ESP изменится, но EBP можно будет использовать для того, чтобы считывать значения параметров напрямую из стека (их смещения запишутся как EBP + номер параметра).
Регистр флагов.
Еще один важный регистр, использующийся при выполнении большинства команд, — регистр флагов. Его младшие 16 бит, представлявшие собой весь этот регистр до процессора 80386, называются FLAGS. В E FLAGS каждый бит является флагом, то есть устанавливается в 1 при определенных условиях или установка его в 1 изменяет поведение процессора. Все флаги, расположенные в старшем слове регистра, имеют отношение к управлению защищенным режимом, поэтому будем рассматривать только регистр FLAGS.
- CF – флаг переноса. Устанавливается в 1, если результат предыдущей операции не уместился в приемнике и произошел перенос старшего бита или если требуется заем (при вычитании), в противном случае – в 0. Например, после сложения слова 0FFFFh и 1, если регистр, в который надо поместить результат, — слово, в него будет записано 0000h и флаг CF=1.
- PF – флаг четности. Устанавливается в 1, если младший байт результата предыдущей команды содержит четное число битов, равных 1, и в 0, если нечетное. Это не тоже самое, что делимость на два. Число делится на 2 без остатка, если его самый младший бит равен нулю, и не делится, когда он равен 1.
- AF – флаг полупереноса или вспомогательного переноса. Устанавливается в 1, если в результате предыдущей операции произошел перенос (или заем) из третьего бита в четвертый. Этот флаг используется автоматически командами двоично-десятичной коррекции.
- ZF – флаг нуля. Устанавливается в 1, если результат предыдущей команды – ноль.
- SF – флаг знака. Он всегда равен старшему биту результата.
- TF – флаг ловушки. Он был предусмотрен для работы отладчиков, не использующих защищенный режим. Установка его в 1 приводит к тому, что после выполнения каждой программной команды управление временно передается отладчику (вызывается прерывание 1 – описание команды INT).
- IF – флаг прерываний. Сброс этого флага приводит к тому, что процессор перестает обрабатывать прерывания от внешних устройств (описание команды INT). Обычно его сбрасывают на короткое время для выполнения критических участков кода.
- DF – флаг направления. Он контролирует поведения команд обработки строк: когда он установлен в 1, строки обрабатываются в сторону уменьшения адресов, когда DF=0 – наоборот.
- OF – флаг переполнения. Он устанавливается в 1, если результат предыдущей арифметической операции над числами со знаком выходит за допустимые для них пределы. Например, если при сложении двух положительных чисел получается число со старшим битом, равным единице, то есть отрицательное, и наоборот.
Флаги IOPL (уровень привилегий ввода-вывода) и NT (вложенная задача) применяются в защищенном режиме.
Источник: studopedia.ru
Регистр программы что это
2.1. Процессор.
Самый основной элемент компьютера, это, конечно, процессор. Давайте подробней его рассмотрим. Упрощённая структура процессора (рис. 4):
Рис. 4. Упрощённая структура процессора
Основные элементы процессора:
· Регистры – это специальные ячейки памяти, физически расположенные внутри процессора. В отличие от ОЗУ, где для обращения к данным требуется использовать шину адреса, к регистрам процессор может обращаться напрямую. Это существенно ускорят работу с данными.
· Арифметико-логическое устройство выполняет арифметические операции, такие как сложение, вычитание, а также логические операции.
· Блок управления определяет последовательность микрокоманд, выполняемых при обработке машинных кодов (команд).
· Тактовый генератор , или генератор тактовых импульсов, задаёт рабочую частоту процессора.
2.2. Режимы работы процессора.
Процессор архитектуры x86 может работать в одном из пяти режимов и переключаться между ними очень быстро:
1. Реальный (незащищенный) режим (real address mode) — режим, в котором работал процессор 8086. В современных процессорах этот режим поддерживается в основном для совместимости с древним программным обеспечением (DOS-программами).
2. Защищенный режим (protected mode) — режим, который впервые был реализован в 80286 процессоре. Все современные операционные системы (Windows, Linux и пр.) работают в защищенном режиме. Программы реального режима не могут функционировать в защищенном режиме.
3. Режим виртуального процессора 8086 (virtual-8086 mode, V86) — в этот режим можно перейти только из защищенного режима. Служит для обеспечения функционирования программ реального режима, причем дает возможность одновременной работы нескольких таких программ, что в реальном режиме невозможно.
Режим V86 предоставляет аппаратные средства для формирования виртуальной машины, эмулирующей процессор8086. Виртуальная машина формируется программными средствами операционной системы. В Windows такая виртуальная машина называется VDM (Virtual DOS Machine — виртуальная машина DOS). VDM перехватывает и обрабатывает системные вызовы от работающих DOS-приложений.
4. Нереальный режим (unreal mode, он же big real mode) — аналогичен реальному режиму, только позволяет получать доступ ко всей физической памяти, что невозможно в реальном режиме.
5. Режим системного управления System Management Mode (SMM) используется в служебных и отладочных целях.
При загрузке компьютера процессор всегда находится в реальном режиме, в этом режиме работали первые операционные системы, например MS-DOS, однако современные операционные системы, такие как Windows и Linux переводят процессор в защищенный режим. Вам, наверное, интересно, что защищает процессор в защищенном режиме? В защищенном режиме процессор защищает выполняемые программы в памяти от взаимного влияния (умышленно или по ошибке) друг на друга, что легко может произойти в реальном режиме. Поэтому защищенный режим и назвали защищенным.
2.3. Регистры процессора (программная модель процессора).
Для понимания работы команд ассемблера необходимо четко представлять, как выполняется адресация данных, какие регистры процессора и как могут использоваться при выполнении инструкций. Рассмотрим базовую программную модель процессоров Intel 80386, в которую входят:
· 8 регистров общего назначения, служащих для хранения данных и указателей;
· регистры сегментов — они хранят 6 селекторов сегментов;
· регистр управления и контроля EFLAGS, который позволяет управлять состоянием выполнения программы и состоянием (на уровне приложения) процессора;
· регистр-указатель EIP выполняемой следующей инструкции процессора;
· система команд (инструкций) процессора;
· режимы адресации данных в командах процессора.
Начнем с описания базовых регистров процессора Intel 80386.
Базовые регистры процессора Intel 80386 являются основой для разработки программ и позволяют решать основные задачи по обработке данных. Все они показаны на рис. 5.
Рис. 5. Базовые регистры процессора Intel 80386
Среди базового набора регистров выделим отдельные группы и рассмотрим их назначение.
2.4. Регистры общего назначения.
32-битные регистры ЕАХ (аккумулятор), ЕВХ (база), ЕСХ (счетчик), EDX (регистр данных) могут использоваться без ограничений для любых целей – временного хранения данных, аргументов или результатов различных операций. Названия регистров происходят от того, что некоторые команды применяют их специальным образом: так, аккумулятор часто необходим для хранения результата действий, выполняемых над двумя операндами, регистр данных в этих случаях получает старшую часть результата, если он не умещается в аккумулятор, регистр-счетчик работает как счетчик в циклах и строковых операциях, а регистр-база – при так называемой адресации по базе.
Младшие 16 бит каждого из этих регистров применяются как самостоятельные регистры с именами АХ, ВХ, СХ, DX. На самом деле в процессорах 8086 – 80286 все регистры были 16-битными и назывались именно так, а 32-битные ЕАХ – EDX появились с введением 32-битной архитектуры в 80386. Кроме этого, отдельные байты в 16-битных регистрах АХ – DX тоже могут использоваться как 8-битные регистры и иметь свои имена. Старшие байты этих регистров называются АН, ВН, СН, DH, а младшие — AL, BL, CL, DL (см. рис.4.1).
Остальные четыре регистра – ESI (индекс источника), EDI (индекс приемника), ЕВР (указатель базы), ESP (указатель стека) – имеют более конкретное назначение и применяются для хранения всевозможных временных переменных. Регистры ESI и EDI необходимы в строковых операциях, ЕВР и ESP – при работе со стеком. Так же как и в случае с регистрами ЕАХ — EDX, младшие половины этих четырех регистров называются SI, DI, BP и SP соответственно, и в процессорах до 80386 только они и присутствовали.
2.5. Сегментные регистры.
При использовании сегментированных моделей памяти для формирования любого адреса нужны два числа – адрес начала сегмента и смещение искомого байта относительно этого начала (в бессегментной модели памяти flat адреса начал всех сегментов равны). Операционные системы (кроме DOS) могут размещать сегменты, с которыми работает программа пользователя, в разных местах памяти и даже временно записывать их на диск, если памяти не хватает. Так как сегменты способны оказаться где угодно, программа обращается к ним, применяя вместо настоящего адреса начала сегмента 16-битное число, называемое селектором. В процессорах Intel предусмотрено шесть 16-битных регистров — CS, DS, ES, FS, GS, SS , где хранятся селекторы. (Регистры FS и GS отсутствовали в 8086, но появились уже в 80286.) Это означает, что в любой момент можно изменить параметры, записанные в этих регистрах.
В отличие от DS, ES, GS, FS, которые называются регистрами сегментов данных, CS и SS отвечают за сегменты двух особенных типов – сегмент кода и сегмент стека. Первый содержит программу, исполняющуюся в данный момент, следовательно, запись нового селектора в этот регистр приводит к тому, что далее будет исполнена не следующая по тексту программы команда, а команда из кода, находящегося в другом сегменте, с тем же смещением. Смещение очередной выполняемой команды всегда хранится в специальном регистре EIP (указатель инструкции, 16-битная форма IP), запись в который так же приведет к тому, что далее будет исполнена какая-нибудь другая команда. На самом деле все команды передачи управления – перехода, условного перехода, цикла, вызова подпрограммы и т.п. – и осуществляют эту самую запись в CS и EIP.
2.6. Регистр флагов.
Еще один важный регистр, использующийся при выполнении большинства команд, — регистр флагов. Как и раньше, его младшие 16 бит, представлявшие собой весь этот регистр до процессора 80386, называются FLAGS. В EFLAGS каждый бит является флагом, то есть устанавливается в 1 при определенных условиях или установка его в 1 изменяет поведение процессора. Все флаги, расположенные в старшем слове регистра, имеют отношение к управлению защищенным режимом, поэтому здесь рассмотрен только регистр FLAGS (см. рис. 6):
Рис. 6. Регистр флагов FLAGS.
CF – флаг переноса. Устанавливается в 1, если результат предыдущей операции не уместился в приемнике и произошел перенос из старшего бита или если требуется заем (при вычитании), в противном случае – в 0. Например, после сложения слова 0 FFFFh и 1, если регистр, в который надо поместить результат, – слово, в него будет записано 0000 h и флаг CF = 1.
PF – флаг четности. Устанавливается в 1, если младший байт результата предыдущей команды содержит четное число битов, равных 1, и в 0, если нечетное. Это не то же самое, что делимость на два. Число делится на два без остатка, если его самый младший бит равен нулю, и не делится, когда он равен 1.
AF – флаг полупереноса или вспомогательного переноса. Устанавливается в 1, если в результате предыдущей операции произошел перенос (или заем) из третьего бита в четвертый. Этот флаг используется автоматически командами двоично-десятичной коррекции.
ZF – флаг нуля. Устанавливается в 1, если результат предыдущей команды – ноль.
SF – флаг знака. Он всегда равен старшему биту результата.
TF – флаг ловушки. Он был предусмотрен для работы отладчиков, не использующих защищенный режим. Установка его в 1 приводит к тому, что после выполнения каждой программной команды управление временно передается отладчику.
IF – флаг прерываний. Сброс этого флага в 0 приводит к тому, что процессор перестает обрабатывать прерывания от внешних устройств. Обычно его сбрасывают на короткое время для выполнения критических участков кода.
DF – флаг направления. Он контролирует поведение команд обработки строк: когда он установлен в 1, строки обрабатываются в сторону уменьшения адресов, когда DF =0 – наоборот.
OF – флаг переполнения. Он устанавливается в 1, если результат предыдущей арифметической операции над числами со знаком выходит за допустимые для них пределы. Например, если при сложении двух положительных чисел получается число со старшим битом, равным единице, то есть отрицательное, и наоборот.
Флаги IOPL (уровень привилегий ввода-вывода) и NT (вложенная задача) применяются в защищенном режиме.
2.7. Цикл выполнения команды
Программа состоит из машинных команд. Программа загружается в оперативную память компьютера. Затем программа начинает выполняться, то есть процессор выполняет машинные команды в той последовательности, в какой они записаны в программе.
Для того чтобы процессор знал, какую команду нужно выполнять в определённый момент, существует счётчик команд – специальный регистр, в котором хранится адрес команды, которая должна быть выполнена после выполнения текущей команды. То есть при запуске программы в этом регистре хранится адрес первой команды. В процессорах Intel в качестве счётчика команд (его ещё называют указатель команды) используется регистр EIP (или IP в 16-разрядных программах).
Счётчик команд работает со сверхоперативной памятью, которая находится внутри процессора. Эта память носит название очередь команд, куда помещается одна или несколько команд непосредственно перед их выполнением. То есть в счётчике команд хранится адрес команды в очереди команд, а не адрес оперативной памяти.
Цикл выполнения команды – это последовательность действий, которая совершается процессором при выполнении одной машинной команды. При выполнении каждой машинной команды процессор должен выполнить как минимум три действия: выборку, декодирование и выполнение. Если в команде используется операнд, расположенный в оперативной памяти, то процессору придётся выполнить ещё две операции: выборку операнда из памяти и запись результата в память. Ниже описаны эти пять операций.
- Выборка команды . Блок управления извлекает команду из памяти (из очереди команд), копирует её во внутреннюю память процессора и увеличивает значение счётчика команд на длину этой команды (разные команды могут иметь разный размер).
- Декодирование команды . Блок управления определяет тип выполняемой команды, пересылает указанные в ней операнды в АЛУ и генерирует электрические сигналы управления АЛУ, которые соответствуют типу выполняемой операции.
- Выборка операндов . Если в команде используется операнд, расположенный в оперативной памяти, то блок управления начинает операцию по его выборке из памяти.
- Выполнение команды . АЛУ выполняет указанную в команде операцию, сохраняет полученный результат в заданном месте и обновляет состояние флагов, по значению которых программа может судить о результате выполнения команды.
- Запись результата в память . Если результат выполнения команды должен быть сохранён в памяти, блок управления начинает операцию сохранения данных в памяти.
Суммируем полученные знания и составим цикл выполнения команды:
- Выбрать из очереди команд команду, на которую указывает счётчик команд.
- Определить адрес следующей команды в очереди команд и записать адрес следующей команды в счётчик команд.
- Декодировать команду.
- Если в команде есть операнды, находящиеся в памяти, то выбрать операнды.
- Выполнить команду и установить флаги.
- Записать результат в память (по необходимости).
- Начать выполнение следующей команды с п.1.
Это упрощённый цикл выполнения команды. К тому же действия могут отличаться в зависимости от процессора. Однако это даёт общее представление о том, как процессор выполняет одну машинную команду, а значит и программу в целом.
Источник: www.sites.google.com
Что такое регистры 1С:Предприятие и зачем они нужны
Разговор сейчас, в частности, пойдет о регистрах 1С:Бухгалтерии 8. Давайте вкратце выясним, что это такое и зачем оно нужно.
В своём курсе по 1С:Бухгалтерии Предприятия 8 я рассказываю пользователям и о том, как хранятся данные в конфигурации. Конечно, особые подробности тут не нужны, но, тем не менее, необходимо знать, какие виды данных присутствуют в 1С Бухгалтерии 8 и как с ними «управляться». Это важно ещё и потому, что далеко не всегда можно полагаться на то, что в программе есть абсолютно всё, что вам нужно.
К примеру, вы можете захотеть исправить проводки документа вручную, подключить дополнительные внешние отчёты или обработки, ввести ручную операцию или же просто проверить, что программа всё делает правильно. Бывают и другие случаи, когда нужно посмотреть не только на справочники и документы, но и на данные другого типа.
Устройство программы, в том числе работа с регистрами, справочниками, отчётами и прочими компонентами рассматривается в нашем спецкурсе по конфигурации 1С:Бухгалтерия 8.3 (240 уроков, 42 часа на видео). Посмотрите примеры уроков, учебный план и полное описание видеокурса!
Что такое регистры 1С Бухгалтерии и зачем они нужны
Допустим, что в течение месяца мы вводим в программу различные документы. Однако, в конце концов потребуется сформировать кое-какую отчётность. Откуда тогда 1С Бухгалтерия будет брать данные для формирования отчетов?
Для примера предположим, что данные будут браться из документов. В таком случае каждый раз при формировании любого отчёта программе понадобилось бы перебрать все документы, извлечь из них данные и только потом на основании этих данных составить затребованный отчет.
Очевидно, что такой подход к формированию отчетов, был бы неэффективен. Поэтому на практике и существует такое понятие как проведение документа. При проведении документа (в отличие от его простой записи в базу 1С) на основании заполненной пользователем формы 1С Бухгалтерия формирует так называемые проводки, то есть вносит одну или более записей в один или более регистров.
Регистры 1С — это просто таблицы, содержащие колонки и строки. Принцип тот же самый, что и у таблиц Excel или обычных «бумажных» таблиц.
Движение документа по регистрам — это записи, вносимые документом в регистры при проведении, называются.
Вот из этих-то регистров и берутся данные при формировании различных отчетов. Это гораздо быстрее, чем перебирать все документы. Именно по этой причине всегда следует внимательно относиться не только к заполнению формы документа, но и при необходимости контролировать формируемые документом проводки.
Виды регистров 1С Бухгалтерии
На самом деле, регистры в 1С:Бухгалтерии используются не только для хранения проводок документов, но и для других различных целей. В связи с этим существует несколько видов регистров:
- Регистры сведений
- Регистры накопления
- Регистры расчета
- Регистры бухгалтерии
Последний тип регистра как раз и хранит бухгалтерские проводки документов. Чем отличаются все эти регистры 1С друг от друга и почему, я рассказываю в читаемом мной курсе Бухгалтерии Предприятия 8. Здесь же приведу ещё раз список существующих регистров 1С, только в виде скриншота (на примере 1С Бухгалтерии 8.2).
[нажмите на картинку для увеличения]
Справка: как сохранять фото с сайтов
А вот то же самое на примере 1С:Бухгалтерии 8.3:
[нажмите на картинку для увеличения]
Справка: как сохранять фото с сайтов
Просмотр регистров 1С Бухгалтерии
Никогда не помешает знать, где именно находятся в программе те или иные регистры и зачем каждый из них нужен. Ну хотя бы потому, что однажды (и очень даже запросто!) может потребоваться их просмотреть с целью поиска и исправления ошибок в учете (типичная задача при закрытии месяца).
Любой из регистров можно открыть с помощью форм, приведенных мной выше. То есть из общего списка регистров определенного типа. Для примера приведу самый известный регистр — регистр бухгалтерии. Впрочем, это название больше техническое, поскольку для пользователя он называется Журнал проводок.
[нажмите на картинку для увеличения]
Справка: как сохранять фото с сайтов
При открытии любого регистра данные там отображаются «в общей куче». Их можно отфильтровать по необходимым вам параметрам в точности также, как это можно сделать с документами.
Внесение изменений в регистры
Если вы еще раз взглянете на фрагмент содержимого регистра бухгалтерии 1С Предприятие на рисунке выше, то обратите внимание на отсутствие кнопки Добавить. Дело в том, что не во все регистры можно вносить записи напрямую, т.е. открыть его и добавить элементы (строки) вручную, как это можно сделать с документами или справочниками.
Вопрос на засыпку: знаете ли вы, что в некоторые справочники также нельзя вносить данные через всеми любимую кнопку «Добавить». Как думаете, почему?
А вот пример простого регистра сведений, в который записи вручную вносить можно. Использовать такие регистры, конечно, проще.
[нажмите на картинку для увеличения]
Справка: как сохранять фото с сайтов
Если в регистре нет кнопки Добавить, то данные в такие регистры вносятся только так называемыми регистраторами. Смысл понятия регистратор иллюстрирует всё та же картинка с формой регистра бухгалтерии.
Подведём итоги
В регистрах 1С Бухгалтерии хранятся данные, не менее важные, чем записаны в формах документов. Очень важно уметь правильно работать с различными регистрами — это помогает понимать, все ли правильно делает программа (в соответствии с вашими потребностями).
Умение обращаться с регистрами помогает исправлять ошибки в учете.
Особенности разных регистров, внесение в них данных, типы регистраторов, различие между периодическими и непериодическими регистрами, а также многое другое, я рассматриваю в онлайн курсе 1С:Бухгалтерии 8, представленному на данном сайте.
Ещё также хочу добавить, что если вы не уверены, зачем нужен тот или иной регистр и как он работает, то лучше не вносите в него изменения вручную, поскольку потом могут возникнуть ошибки, в том числе трудно отслеживаемые. Последнему у меня посвящена отдельная статья.
Уникальная метка публикации: 85C319C6-EEA2-3AE5-9F1A-D3BB6E19D613
Источник: //artemvm.info/information/uchebnye-stati/1s-predpriyatie/chto-takoe-registry-i-zachem-oni-nuzhny/
Источник: artemvm.info