Для перевода программы с языка программирования в машинные коды, понятные компьютеру, существуют специальные программы – трансляторы. Трансляторы бывают двух видов: интерпретаторы и компиляторы.
Интерпретаторыпереводят в машинный код (или некое промежуточное представление) и сразу выполняют каждый оператор программы. Причем только после того, как текущий оператор успешно выполнен, интерпретатор перейдет к следующему.
При этом если один и тот же оператор должен выполняться в программе многократно, интерпретатор всякий раз будет выполнять его так, как будто встретил впервые. Поэтому недостатком интерпретатора является то, что программы, в которых требуется осуществить большой объем повторяющихся вычислений, могут работать медленно. Можно сказать, что интерпретатор моделирует некую виртуальную вычислительную машину, для которой базовыми инструкциями служат не элементарные команды процессора, а операторы языка программирования. Для выполнения этой же программы на другом компьютере, там также должен быть установлен интерпретатор.
#1. Этапы трансляции программы в машинный код. Стандарты | Язык C для начинающих
С помощью интерпретатора допустимо в любой момент остановить работу программы, исследовать содержимое памяти, организовать диалог с пользователем, выполнить сколь угодно сложные преобразования данных и при этом постоянно контролировать состояние окружающей программно-аппаратной среды, благодаря чему достигается высокая надежность работы. Интерпретатор при выполнении каждого оператора проверяет множество характеристик операционной системы и при необходимости максимально подробно информирует разработчика о возникающих проблемах. Кроме того, интерпретатор очень удобен для использования в качестве инструмента изучения программирования, так как позволяет понять принципы работы любого отдельного оператора языка.
Компиляторы переводят весь текст программы в машинный код, затем его можно использовать отдельно от исходного текста. Компиляторы полностью просматривают весь текст программы (исходный код) в поисках синтаксических ошибок, выполняют определенный смысловой анализ и затем автоматически переводятна машинный язык — генерируют машинный код. Нередко при этом выполняется оптимизацияс помощью набора методов, позволяющих повысить быстродействие программы (например, с помощью инструкций, ориентированных на конкретный процессор, путем исключения ненужных команд, промежуточных вычислений и т. д.). В результате законченная программа получается компактной и эффективной, работает в сотни раз быстрее программы, выполняемой с помощью интерпретатора, и может быть перенесена на другие компьютеры с процессором, поддерживающим соответствующий машинный код.
Основной недостаток компиляторов — трудоемкость трансляции языков программирования, ориентированных на обработку данных сложной структуры, часто заранее неизвестной или динамически меняющейся во время работы программы. Тогда в машинный код приходится вставлять множество дополнительных проверок, анализировать наличие ресурсов операционной системы, динамически их захватывать и освобождать, формировать и обрабатывать в памяти компьютера сложные объекты, что на уровне жестко заданных машинных инструкций осуществить довольно трудно, а для ряда задач практически невозможно.
Чем машинный код отличается от ассемблера
В реальных системах программирования перемешаны технологии и компиляции и интерпретации. В процессе отладки программа может выполняться по шагам, а затем компилироваться в машинный код.
При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.047 сек.)
Источник: konspekta.net
Процесс выполнения управляемого кода
Процесс управляемого исполнения включает следующие шаги, которые подробно разбираются позднее в этом разделе:
- Выбор компилятора. Чтобы воспользоваться преимуществами среды CLR, необходимо использовать один или несколько языковых компиляторов, обращающихся к среде выполнения.
- Компиляция кода в MSIL. При компиляции исходный код преобразуется в MSIL и создаются необходимые метаданные.
- Компиляция инструкций MSIL в машинный код. Во время выполнения JIT-компилятор преобразует инструкции MSIL в машинный код. Во время этой компиляции выполняется проверка кода и метаданных MSIL с целью установить, можно ли для них определить, является ли код типобезопасным.
- Выполнение кода. Среда CLR предоставляет инфраструктуру, обеспечивающую выполнение кода, и ряд служб, которые можно использовать при выполнении.
Выбор компилятора
Чтобы воспользоваться преимуществами, предоставляемыми средой CLR, необходимо применить один или несколько языковых компиляторов, ориентированных на среду выполнения, например компилятор Visual Basic, C#, Visual C++, F# или один из многочисленных компиляторов от независимых разработчиков, например компилятор Eiffel, Perl или COBOL.
Поскольку среда выполнения является многоязычной, она поддерживает широкий набор разнообразных типов данных и языковых средств. Доступные средства среды выполнения определяются используемым языковым компилятором, и разработчики создают код с использованием этих средств. Используемый в коде синтаксис определяется компилятором, а не средой выполнения.
Если компонент должен быть полностью доступен для компонентов, написанных на других языках, то экспортируемые этим компонентом типы должны предоставлять исключительно языковые функции, включенные в состав спецификации CLS. Атрибут CLSCompliantAttribute позволяет гарантировать, что код является CLS-совместимым. Дополнительные сведения см. в разделе Независимость от языка и независимые от языка компоненты.
Компиляция в MSIL
При компиляции в управляемый код компилятор преобразует исходный код в промежуточный язык Microsoft (MSIL), представляющий собой независимый от процессора набор инструкций, который можно эффективно преобразовать в машинный код. Язык MSIL включает инструкции для загрузки, сохранения, инициализации и вызова методов для объектов, а также инструкции для арифметических и логических операций, потоков управления, прямого доступа к памяти, обработки исключений и других операций. Перед выполнением код MSIL необходимо преобразовать в код для конкретного процессора, обычно с помощью JIT-компилятора. Поскольку среда CLR предоставляет для каждой поддерживаемой компьютерной архитектуры один или несколько JIT-компиляторов, один набор инструкций MSIL можно компилировать и выполнять в любой поддерживаемой архитектуре.
Когда компилятор создает код MSIL, одновременно создаются метаданные. Метаданные содержат описание типов в коде, включая определение каждого типа, сигнатуры каждого члена типа, члены, на которые есть ссылки в коде, а также другие сведения, используемые средой выполнения во время выполнения.
MSIL и метаданные содержатся в переносимом исполняемом (PE) файле, который основывается на форматах Microsoft PE и COFF, ранее использовавшихся для исполняемого контента, но при этом расширяет их возможности. Этот формат файлов, позволяющий размещать код MSIL или машинный код, а также метаданные, позволяет операционной системе распознавать образы среды CLR. Наличие в файле метаданных наряду с MSIL позволяет коду описывать себя. Это устраняет потребность в библиотеках типов и языке IDL. Среда выполнения находит и извлекает метаданные из файла по мере необходимости при выполнении.
Компиляция инструкций MSIL в машинный код
Перед запуском MSIL его необходимо скомпилировать в машинный код в среде CLR для архитектуры конечного компьютера. Платформа .NET предоставляет два способа такого преобразования:
- JIT-компилятор платформы .NET.
- Ngen.exe (генератор образов в машинном коде).
Компиляция с помощью JIT-компилятора
При JIT-компиляции язык MSIL преобразуется в машинный код во время выполнения приложения по требованию, когда загружается и выполняется содержимое сборки. Поскольку среда CLR предоставляет JIT-компилятор для каждой поддерживаемой архитектуры процессора, разработчики могут создавать набор сборок MSIL, которые могут компилироваться с помощью JIT-компилятора и выполняться на разных компьютерах с разной архитектурой. Если управляемый код вызывает специфический для платформы машинный API или библиотеку классов, то он будет выполняться только в соответствующей операционной системе.
При JIT-компиляции учитывается возможность того, что определенный код может никогда не вызываться во время выполнения. Чтобы не тратить время и память на преобразование всего содержащегося в PE-файле MSIL в машинный код, при компиляции MSIL преобразуется в машинный код по мере необходимости во время выполнения.
Полученный таким образом машинный код сохраняется в памяти, что позволяет использовать его при дальнейших вызовах в контексте этого процесса. Загрузчик создает и присоединяет заглушки к каждому методу в типе, когда тип загружается и инициализируется. При первом вызове метода заглушка передает управление JIT-компилятору, который преобразует MSIL для этого метода в машинный код и заменяет заглушку на созданный машинный код. Поэтому последующие вызовы метода, скомпилированного с помощью JIT-компилятора, ведут непосредственно к машинному коду.
Создание кода во время установки с помощью NGen.exe
Тот факт, что JIT-компилятор преобразует MSIL-код сборки в машинный код при вызове отдельных методов, определенных в этой сборке, отрицательно сказывается на производительности во время выполнения. В большинстве случаев снижение производительности приемлемо. Что более важно, код, созданный JIT-компилятором, будет привязан к процессу, вызвавшему компиляцию.
Его нельзя сделать общим для нескольких процессов. Чтобы созданный код можно было использовать в нескольких вызовах приложения или в нескольких процессах, которые совместно используют набор сборок, среда CLR предоставляет режим предварительной компиляции. В таком режиме компиляции для преобразования сборок MSIL в машинный код в стиле JIT-компилятора используется генератор образов в машинном коде (Ngen.exe). Однако, работа Ngen.exe отличается от JIT-компилятора в трех аспектах.
- Ngen.exe выполняет преобразование из MSIL-кода в машинный код перед выполнением приложения, а не во время его выполнения.
- При этом сборка компилируется целиком, а не по одному методу за раз.
- Она сохраняет созданный код в кэше образа машинного кода в виде файла на диске.
Проверка кода
В процессе компиляции в машинный код MSIL-код должен пройти проверку, если только администратор не установил политику безопасности, разрешающую пропустить проверку кода. MSIL-код и метаданные проверяются на типобезопасность. Это подразумевает, что код должен обращаться только к тем адресам памяти, к которым ему разрешен доступ. Типобезопасность помогает изолировать объекты друг от друга и способствует их защите от непредумышленного или злонамеренного повреждения. Она также гарантирует надежное применение условий безопасности для кода.
Среда выполнения основывается на истинности следующих утверждений для поддающегося проверке типобезопасного кода:
- ссылка на тип строго совместима с адресуемым типом;
- для объекта вызываются только правильно определенные операции;
- удостоверения являются подлинными.
В процессе проверки кода MSIL делается попытка подтвердить, что код может получать доступ к расположениям в памяти и вызывать методы только через правильно определенные типы. Например, код не должен разрешать доступ к полям объекта так, чтобы можно было выходить за границы расположения в памяти.
Кроме того, проверка определяет, правильно ли был создан код MSIL, поскольку неверный код MSIL может приводить к нарушению правил строгой типизации. В процессе проверки передается правильно определенный типобезопасный код. Однако иногда типобезопасный код может не пройти проверку из-за ограничений процесса проверки, а некоторые языки по своей структуре не позволяют создавать поддающийся проверке типобезопасный код. Если в соответствии с политикой безопасности использование типобезопасного кода является обязательным и код не проходит проверку, то при выполнении кода создается исключение.
Выполнение кода
Среда CLR предоставляет инфраструктуру, обеспечивающую управляемое выполнение кода, и ряд служб, которые можно использовать при выполнении. Перед выполнением метода его необходимо скомпилировать в код для конкретного процессора. Каждый метод, для которого создан MSIL-код, компилируется с помощью JIT-компилятора при первом вызове и затем запускается. При следующем вызове метода будет выполняться существующий JIT-скомпилированный код. Процесс JIT-компиляции и последующего выполнения кода повторяется до завершения выполнения.
Во время выполнения для управляемого кода доступны такие службы, как сборка мусора, обеспечение безопасности, взаимодействие с неуправляемым кодом, поддержка отладки на нескольких языках, а также поддержка расширенного развертывания и управления версиями.
В Microsoft Windows Vista загрузчик операционной системы выполняет поиск управляемых модулей, анализируя бит в заголовке COFF. Установленный бит обозначает управляемый модуль. При обнаружении управляемых модулей загружается библиотека Mscoree.dll, а подпрограммы _CorValidateImage и _CorImageUnloading уведомляют загрузчик о загрузке и выгрузке образов управляемых модулей. Подпрограмма _CorValidateImage выполняет следующие действия:
- Проверяет, является ли код допустимым управляемым кодом.
- Заменяет точку входа в образе на точку входа в среде выполнения.
В 64-разрядных системах Windows _CorValidateImage изменяет образ, находящийся в памяти, путем преобразования его из формата PE32 в формат PE32+.
См. также раздел
- Обзор
- Независимость от языка и независимые от языка компоненты
- Метаданные и компоненты с самоописанием
- Ilasm.exe (ассемблер IL)
- Security
- Взаимодействие с неуправляемым кодом
- Развертывание
- Сборки в .NET
- Домены приложений
Источник: learn.microsoft.com
Билеты по информатике. Билет понятие информации. Свойства информации. Информация и данные. 3
Единственный в мире Музей Смайликов
Самая яркая достопримечательность Крыма
Скачать 0.87 Mb.
БИЛЕТ 40 Перевод программ с языков программирования в машинные коды. Ассемблеры и трансляторы, типы трансляторов
Для перевода программы, написанной на языке высокого уровня, в машинные коды, применяют специальные программы – трансляторы (англ. translator – переводчик).
Системы программирования – это программные средства для создания и отладки новых программ.
Транслятор — это программа-переводчик. Она преобразует программу, написанную на одном из языков высокого уровня, в программу, состоящую из машинных команд[15].
Компилятор (англ. compiler — составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.
2) Free Pascal Compiler
3) Компиляторы C, C++ и Fortran от Sun Microsystems Inc.
4) Watcom Fortran/C++ Compiler
5) Intel C++/Fortran compiler
Компилятор обеспечивает преобразование программы с одного языка на другой. Команды исходного языка сильно отличаются по организации и мощности, нежели команды машинного языка. Бывают такие, в которых одна команда исходного языка транслируется в 7-10 машинных команд.
Существуют даже такие, в которых в каждой команде может соответствовать более 100 машинных команд (например язык программирования Пролог). В исходных языках довольно часто используется строгая типизация данных, которая осуществляется через их предварительное описание. Программирование на таких языках может опираться не только на кодирование алгоритма, но и на тщательное обдумывание структур данных или классов. Весь процесс трансляции с таких языков программирования обычно называется компиляцией, а исходные языки обычно относятся к языкам высокого уровня.
Интерпретатор (англ. interpreter — истолкователь, устный переводчик) переводит и выполняет программу строка за строкой.В отличие от компилятора, интерпретатор не порождает на выходе программу на машинном языке. Распознав команду исходного языка, он тут же выполняет ее. Как в компиляторах, так и в интерпретаторах используются одинаковые методы анализа исходного текста программы.
Но интерпретатор позволяет начать обработку данных после написания даже одной команды. Это делает процесс разработки и отладки программ более гибким.
Кроме того, отсутствие выходного машинного кода позволяет не «захламлять» внешние устройства дополнительными файлами, а сам интерпретатор можно достаточно легко адаптировать к любым машинным архитектурам, разработав его только один раз на широко распространенном языке программирования. Поэтому, интерпретируемые языки, типа Java Script, VB Script, получили широкое распространение. Недостатком интерпретаторов является низкая скорость выполнения программ. Обычно интерпретируемые программы выполняются в 50-100 раз медленнее программ, написанных в машинных кодах.
Ассемблер (Assembly) — язык программирования, понятия которого отражают архитектуру электронно-вычислительной машины. Язык ассемблера — символьная форма записи машинного кода, использование которого упрощает написание машинных программ. Для одной и той же ЭВМ могут быть разработаны разные языки ассемблера.
В отличие от языков высокого уровня абстракции, в котором многие проблемы реализации алгоритмов скрыты от разработчиков, язык ассемблера тесно связан с системой команд микропроцессора. Для идеального микропроцессора, у которого система команд точно соответствует языку программирования, ассемблер вырабатывает по одному машинному коду на каждый оператор языка. На практике для реальных микропроцессоров может потребоваться несколько машинных команд для реализации одного оператора языка.
Язык ассемблера обеспечивает доступ к регистрам, указание методов адресации и описание операций в терминах команд процессора. Язык ассемблера может содержать средства более высокого уровня абстракции: встроенные и определяемые макрокоманды, соответствующие нескольким машинным командам, автоматический выбор команды в зависимости от типов операндов, средства описания структур данных. Главное достоинство языка ассемблера — «приближенность» к процессору, который является основой используемого программистом компьютера, а главным неудобством — слишком мелкое деление типовых операций, которое большинством пользователей воспринимается с трудом. Однако язык ассемблера в значительно большей степени отражает само функционирование компьютера, чем все остальные языки.
- объем используемой памяти (программы-загрузчики, встраиваемое программное обеспечение, программы для микроконтроллеров и процессоров с ограниченными ресурсами, вирусы, программные защиты и т.п.);
- быстродействие (программы, написанные на языке ассемблера выполняются гораздо быстрее, чем программы-аналоги, написанные на языках программирования высокого уровня абстракции. В данном случае быстродействие зависит от понимания того, как работает конкретная модель процессора, реальный конвейер на процессоре, размер кэша, тонкостей работы операционной системы. В результате, программа начинает работать быстрее, но теряет переносимость и универсальность).
Источник: topuch.com