Прикладные программы могут использоваться либо автономно, то есть решать поставленную задачу без помощи других программ, либо в составе программных комплексов или пакетов.
Среди системных программ особое место занимают операционные системы, которые обеспечивают управление ресурсами компьютера с целью их эффективного использования.
Важными классами системных программ являются также программы вспомогательного назначения – утилиты (лат. utilitas — польза). Они либо расширяют и дополняют соответствующие возможности операционной системы, либо решают самостоятельные важные задачи (программы контроля, тестирования и диагностики, программы-драйверы, антивирусные программы и др.).
Часть утилит входит в состав операционной системы, а другая часть функционирует независимо от нее, т.е. автономно.
Система программирования (инструментальные программы) – это система для разработки новых программ на конкретном языке программирования.
Современные системы программирования обычно предоставляют пользователям мощные и удобные средства разработки программ. В них входят:
OCCT v11 — Диагностика процессора(ЦП), Оперативной памяти(ОЗУ), видеокарты(ГП) и Блока Питания(БП)
· компилятор или интерпретатор;
· интегрированная среда разработки;
· средства создания и редактирования текстов программ;
· обширные библиотеки стандартных программ и функций;
· отладочные программы, т.е. программы, помогающие находить и устранять ошибки в программе;
· «дружественная» к пользователю диалоговая среда;
· многооконный режим работы;
· мощные графические библиотеки;
· встроенная справочная служба;
· другие специфические особенности.
Популярные системы программирования — Turbo Basic, Quick Basic, Turbo Pascal, Turbo C.
В последнее время получили распространение системы программирования, ориентированные на создание Windows-приложений:
· пакет Borland Delphi (Дельфи) – блестящий наследник семейства компиляторов Borland Pascal, предоставляющий качественные и очень удобные средства визуальной разработки.
· пакет Microsoft Visual Basic – удобный и популярный инструмент для создания Windows-программ с использованием визуальных средств.
· пакет Borland C++ — одно из самых распространённых средств для разработки DOS и Windows приложений.
ОПЕРАЦИОННЫЕ СИСТЕМЫ. ФУНКЦИИ. КЛАССИФИКАЦИЯ.
Операционная система – это комплекс взаимосвязанных системных программ, назначение которого – организовать взаимодействие пользователя с компьютером и выполнение всех других программ.
Операционная система выполняет роль связующего звена между аппаратурой компьютера, с одной стороны, и выполняемыми программами, а также пользователем, с другой стороны.
Операционная система обычно хранится во внешней памяти компьютера — на диске. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ. Этот процесс называется загрузкой операционной системы.
В функции операционной системы входит:
· осуществление диалога с пользователем;
· ввод-вывод и управление данными;
ПРОЦЕССОР загружается на 100%? ИСПРАВЛЯЕМ ЛЕГКО!
· планирование и организация процесса обработки программ;
· распределение ресурсов (оперативной памяти и ЭШа, процессора, внешних устройств);
· запуск программ на выполнение;
· всевозможные вспомогательные операции обслуживания;
· передача информации между различными внутренними устройствами;
· программная поддержка работы периферийных устройств (дисплея, клавиатуры, дисковых накопителей, принтера и др.).
Классификация операционных систем:
1. ОС делятся на
· Однозадачные ОС (DOS – Disk Operating System) могут выполнять в одно и то же время не более одной задачи,
· Многозадачные ОС (Windows 98/ME) способен одновременно выполнять несколько задач, деля между ними мощность компьютера.
Число задач ограничено мощностью процессора и емкостью ОП.
· Однопользовательской – предназначенной для обслуживания одного клиента (Windows 98/ME),
· многопользовательской – рассчитанной на работу с группой пользователей одновременно (Windows NT/2000).
3. По разрядности ОС делятся на 16-разрядные, 32-разрядные, 64-разрядные.
4. По интерфейсу делятся на графические и неграфические (командной строки).
Операционная система для персонального компьютера, ориентированного на профессиональное применение, должна содержать следующие основные компоненты:
· программы управления вводом/выводом (драйверы);
· программы, управляющие файловой системой и планирующие задания для компьютера;
· процессор командного языка (ядро-интерпретатор), который принимает, анализирует и выполняет команды, адресованные операционной системе.
Для управления внешними устройствами компьютера используются специальные системные программы – драйверы.
Источник: studopedia.su
Системное программное обеспечение. Системные программы выполняются вместе с прикладными и служат для управления ресурсами компьютера — центральным процессором
Системные программы выполняются вместе с прикладными и служат для управления ресурсами компьютера — центральным процессором, памятью, вводом-выводом.
Это программы общего пользования, которые предназначены для всех пользователей компьютера.
Основные функции системного программного обеспечения:
· управление ресурсами компьютера;
· создание копий используемой информации;
· проверка работоспособности устройств компьютера;
· выдача справочной информации о компьютере и др.
Системное программное обеспечение разрабатывается так, чтобы компьютер мог эффективно выполнять прикладные программы.
Среди десятков тысяч системных программ особое место занимают операционные системы, которые обеспечивают управление ресурсами компьютера с целью их эффективного использования.
Операционная система — это комплекс взаимосвязанных системных программ, назначение которого — организация взаимодействия пользователя с компьютером и выполнение всех других программ.
Операционная система обеспечивает совместное функционирование всех устройств компьютера и предоставляет пользователю доступ к его ресурсам.
Важными классами системных программ являются также программы вспомогательного назначения — утилиты (лат. utilitas — польза). Они либо расширяют и дополняют соответствующие возможности операционной системы, либо решают самостоятельные важные задачи.
Воспользуйтесь поиском по сайту:
studopedia.org — Студопедия.Орг — 2014-2023 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с) .
Источник: studopedia.org
Программная модель центрального процессора
Центральный процессор (ЦП) — устройство, непосредственно предназначенное для выполнения вычислительных операций. Процессор работает под управлением программы, выполняя вычисления или принимая логические решения, необходимые для обработки информации.
Большинство современных центральных процессоров строятся на базе 32-битной архитектуры Intel-совместимых процессоров IA-32 (Intel Architecture), которая является третьим поколением базовой архитектуры x86.
Структура центрального процессора
Функционально центральный процессор можно разделить на две части:
- операционную, содержащую арифметико-логическое устройство (АЛУ) и микропроцессорную память (МПП) — регистры общего назначения;
- интерфейсную, содержащую адресные регистры, устройство управления, регистры памяти для хранения кодов команд, выполняемых в ближайшие такты; схемы управления шиной и портами.
Обе части ЦП работают параллельно, причем интерфейсная часть опережает операционную, так что выборка очередной команды из памяти (ее запись в блок регистров команд и предварительный анализ) происходит во время выполнения операционной частью предыдущей команды. Такая организация ЦП позволяет существенно повысить его эффективное быстродействие.
Устройство управления (УУ) вырабатывает управляющие сигналы, поступающие по кодовым шинам инструкций в другие блоки вычислительной машины. УУ формирует управляющие сигналы для выполнения команд центрального процессора.
Арифметико-логическое устройство (АЛУ) предназначено для выполнения арифметических и логических операций преобразования информации.
Системная шина – набор проводников, по которым передаются сигналы, соединяющая процессор с другими компонентами на системной плате. Системная шина состоит из шины данных, шины адреса, шины управления.
- Шина данных – служит для пересылки данных между процессором и оперативным запоминающим устройством (ОЗУ).
- Шина адреса – используется для передачи сигналов, с помощью которых определяется местоположение ячейки памяти для выполняемых процессором операций чтения/записи и ввода-вывода.
- Шина управления – служит для пересылки управляющих сигналов. Каждая линия этой шины имеет своё особое назначение, поэтому они могут быть как однонаправленными, так и двунаправленными.
Микропроцессорная память
Микропроцессорная память представляет собой набор регистров, которые условно можно разделить на 4 группы:
- регистры общего назначения;
- сегментные регистры;
- регистр счетчика команд;
- регистр признаков.
Регистр – устройство сверхбыстродействующей памяти в процессоре, служащее для временного хранения управляющей информации, операндов и/или результатов выполняемых операций. Совокупность регистров процессора называется набором регистров .
Набор регистров общего назначения 32-битной архитектуры центрального процессора включает в себя
- 4 универсальных регистра: EAX, EBX, ECX, EDX ;
- 2 индексных регистра: ESI, EDI ;
- 2 регистра для работы со стеком: ESP, EBP .
Каждый из 32-разрядных универсальных регистров представляет собой логическое объединение, позволяющее отдельно обращаться к своей младшей 16-разрядной части: AX, BX, CX, DX . Каждый 16-разрядный регистр позволяeт независимо обращаться к старшему ( H ) и младшему ( L ) байту. Соответствующие 8-разрядные регистры имеют имена AH, AL, BH, BL, CH, CL, DH, DL .
Регистр EAX (аккумулятор) – автоматически применяется при операциях умножения, деления и при работе с портами ввода-вывода. Его использование в арифметических, логических и некоторых других операциях позволяет увеличить скорость их выполнения. Используется для записи возвращаемого значения из функции.
Регистр EBX (регистр базы) – может содержать адреса элементов оперативной памяти. По умолчанию эти адреса будут представлять собой смещение в сегменте данных.
Регистр ECX (счетчик) – используется в операциях повторения, например в циклах, в строковых командах и т.д.
Регистр EDX (регистр данных) – является единственным элементом, который может хранить адреса портов ввода-вывода в командах типа IN (получить из порта) и OUT (вывести в порт). Без его помощи невозможно обратиться к портам с адресами в адресном пространстве больше 1 байта. Автоматически применяется также в операциях умножения и деления.
Индексные регистры используются для выполнения косвенной адресации, а также автоматически используются в строковых командах. Каждый 32-разрядный индексный регистр представляет собой логическое объединение, позволяющее отдельно обратиться к своей младшей 16-разрядной части.
Регистр ESI (регистр индекса источника) может содержать адреса элементов в оперативной памяти. По умолчанию эти адреса будут представлять собой смещение в сегменте данных. При выполнении операций со строками в этом регистре содержится смещение строки источника в сегменте данных.
Регистр EDI (регистр индекса приемника) может содержать адреса элементов в оперативной памяти. По умолчанию эти адреса будут представлять собой смещение в сегменте данных. При выполнении операций со строками в этом регистре содержится смещение строки приемника в сегменте данных.
Регистры для работы со стеком используются для хранения вершины стека ( ESP ) и текущего элемента (базы) — EBP . Каждый 32-разрядный регистр для работы со стеком представляет собой логическое объединение, позволяющее отдельно обратиться к своей младшей 16-разрядной части.
Регистр EBP (указатель базы) может содержать адреса элементов в оперативной памяти. Эти адреса будут представлять собой смещение в сегменте стека.
Регистр ESP (указатель стека) используется для записи данных в стек и чтения их из стека. Фактически он содержит смещение в сегменте стека, которое определяет нужное слово памяти. Значения этого регистра автоматически меняются командами для работы со стеком типов push, pop, pushf, popf, call, ret .
Сегментные регистры представляют собой набор 16-разрядных регистров (для 32-битной архитектуры центрального процессора).
Сегмент — это логический элемент программы, который представляет собой независимый, поддерживаемый на аппаратном уровне блок памяти.
Регистр CS (регистр сегмента кода) определяет стартовый адрес сегмента, в который помещается код выполняемой программы. Это единственный сегментный регистр, который нельзя загрузить непосредственно. Косвенно загрузить в регистр CS новое значение могут команды вида jxx, call, int, ret, iret .
Регистр DS (регистр сегмента данных) определяет стартовый адрес сегмента, в который помещаются данные для программы. По умолчанию смещения в сегменте данных задаются в регистрах EBX , ESI и EDI .
Регистр SS (регистр сегмента стека) определяет стартовый адрес сегмента, в который помещается стек для программы. По умолчанию смещения для сегмента стека задаются в регистрах ESP и EBP .
Регистры ES, FS, GS (регистры сегментов дополнительных данных) опредляют стартовый адрес сегмента, в который помещаются дополнительные данные для программы. Например, в случае строковых команд, DS определяет сегмент для строки-источника, а ES – сегмент для строки-приемника. За исключением строковых команд, доступ к данным в сегменте ES обычно менее эффективен, чем в сегменте DS .
Регистр счетчика команд
Регистр EIP (указатель команд) содержит смещение в сегменте кода следующей выполняемой команды. Как только некоторая команда начинает выполняться, значение регистра EIP увеличивается на ее длину так, что будет адресовать следующую команду. Физический адрес команды в памяти выполняемой программы определяет пара регистров CS:EIP , то есть к физическому адресу начала сегмента кода добавляется смещение следующей команды в сегменте кода, хранящееся в регистре EIP .
Обычно команды выполняются в той последовательности, в которой они расположены в программе. Нарушают эту последовательность только команды переходов (они начинаются с буквы j: jxx ), команды вызова подпрограммы ( call ), обработчиков прерываний ( int ) и возврата ( ret, iret ). Непосредственно содержимое EIP нельзя изменить или прочитать. Косвенно загрузить в регистр EIP новое значение могут только команды jxx, call, int, ret, iret . Регистр EIP является 32-битным. Младшая 16-битная часть регистра счетчика команд имеет имя IP .
Регистр признаков
Регистр признаков EFLAGS включает биты, каждый из которых устанавливается в единичное или в нулевое состояние при определенных условиях. Регистр EFLAGS 32-битный. Младшая 16-битная часть регистра признаков имеет имя FLAGS .
Все биты регистра признаков подразделяются на
- s — биты состояния ( STATUS );
- c — биты управления ( CONTROL );
- x — системные биты ( SYSTEM ).
CF – бит переноса: устанавливается в 1, когда арифметическая операция генерирует перенос или выход за разрядную сетку результата. сбрасывается в 0 в противном случае. Этот флаг показывает состояние переполнения для беззнаковых целочисленных арифметических действий. Он также используется в арифметических действиях с повышенной точностью. Может быть установлен командой STC или сброшен командой CLC .
PF – бит четности: устанавливается в 1, если результат последней операции имеет четное число единиц.
AF – бит вспомогательного переноса: устанавливается в 1, если арифметическая операция генерирует перенос из младшей тетрады битов (из 3 бита в 4), сбрасывается в 0 в противном случае. Этот флаг используется в двоично-десятичной арифметике.
ZF – бит нулевого значения: устанавливается в 1, если результат нулевой, сбрасывается в 0 в противном случае.
SF – знаковый бит: устанавливается равным старшему биту результата, который определяет знак в знаковых целочисленных операциях (0 – положительное число, 1 – отрицательное число).
TF – бит пошаговой отладки: устанавливается в 1 для включения режима пошаговой отладки программы, сбрасывается в 0 в противном случае.
IF – бит прерываний: при значении 1 микропроцессор реагирует на внешние аппаратные прерывания по входу INTR. При значении 0 микропроцессор игнорирует внешние прерывания.
DF – бит направления: управляет строковыми командами ( MOVS, CMPS, SCAS, LODS, STOS ). Если DF = 1 (команда STD ), то содержимое индексных регистров ESI, EDI увеличивается, если DF = 0 (команда CLD ), то содержимое индексных регистров ESI, EDI уменьшается.
OF – бит переполнения: устанавливается в 1, если целочисленный результат выходит за пределы разрядной сетки. Тем самым данный бит указывает на потерю старшего бита результата.
IOPL – уровень приоритета: 2-битовое поле, которое отображает уровень приоритета ввода-вывода для выполняемой в данное время программы или задачи. Действительный приоритет задачи может быть меньше или равен IOPL.
NT – флаг вложенной задачи: управляет последовательностью вызванных и прерванных задач. Установлен в 1, если текущая задача связана с предыдущей, сброшен в 0, если текущая задача не связана с другими задачами.
RF — флаг возобновления: используется при обработке прерываний от регистров отладки.
VM — флаг виртуального 8086: признак работы процессора в режиме виртуального 8086: 1 – процессор работает в режиме виртуального 8086, 0 – процессор работает в реальном или защищенном режиме.
AC — флаг контроля выравнивания: предназначен для разрешения контроля выравнивания при обращениях к памяти. Если требуется контролировать выравнивание данных и команд по адресам, кратным 2 или 4, то установка данных битов приведет к тому, что все обращения по некратным адресам будут вызывать исключительную ситуацию.
VIF — флаг виртуального прерывания: при определенных условиях (одно из которых – работа микропроцессора в V-режиме) является аналогом флага IF . Флаг VIF используется совместно с флагом VIP .
VIP — флаг отложенного виртуального прерывания: устанавливается в 1 для индикации отложенного прерывания. Используется совместно с VIF в виртуальном режиме.
ID — флаг поддержки идентификации процессора: используется для отображения поддержки микропроцессором инструкции CPUID .
Комментариев к записи: 5
Источник: prog-cpp.ru