Программа водородной энергетики что это

Содержание

PostaНаука. «Голубой водород» — ради голубого неба: в чем перспективность водородной энергетики

Posta-Magazine — журнал о качестве жизни. А Госкорпорация «Росатом» за время своего существования не раз продемонстрировала, что эти слова для нее — не пустой звук. Атомные ледоколы, аддитивные технологии, ядерная медицина, ветроэнергетика — вся эта сложная отрасль работает на благо людей.

Росатом помогает найти способы лечения сложнейших болезней и продления жизни, внедряет новые технологии в сельском хозяйстве, дает возможность модным дизайнерам творить и экспериментировать с новыми технологичными тканями, а музейщикам — возвращать к жизни шедевры живописи. Новая эра атомной отрасли России началась 1 декабря 2007 года.

Были запущены программы развития атомпрома. Благодаря консолидации активов удалось сформировать цепочку полного цикла технологий от добычи урана до вывода атомных объектов из эксплуатации.

Госкорпорация «Росатом», созданная указом Президента РФ, за 2007–2022 гг. прошла огромный путь, превратившись в национального чемпиона энергетического сектора и лидера на глобальном рынке ядерных технологий. И сегодня все 350 предприятий Росатома в 27 городах, все эти 300 тысяч человек, которые там работают, ежедневно «куют» наше счастье и повышают качество жизни каждого из нас. Как именно? Рассказываем в нашей серии материалов, приуроченной к юбилею компании.

Проблемы водородной энергетики — Юрий Добровольский

Словосочетание «Водородная энергетика» — лакмусовая бумажка для выявления тех, кто интересуется экологически чистыми видами топлива и ратует за светлое и чистое низкоуглеродное будущее нашей планеты. И самые продвинутые и совестливые подробно изучают эту во многих отношениях не освоенную для мира отрасль — а самые активные уже делают в ней заметные успехи. В рамках серии совместных материалов с Госкорпорацией «Росатом» предлагаем разобраться в том, как и где можно использовать водород и как он может изменить будущее нашей планеты.

Водород — самый распространенный элемент на поверхности Земли и в космосе, а водородная энергетика основана на использовании водорода в качестве энергоносителя и как компонента технологических процессов. В чем его преимущества?

  • Водород как топливо экологичен, так как при использовании водорода в качестве энергоносителя отсутствуют выбросы углекислого газа: в результате использования водородного топлива образуется вода.
  • Водород можно получать из различных источников — из воды, углеводородов, органических материалов.

Водород:
Я — важнейший элемент,
Без меня и Солнца нет.
Я — без запаха и цвета,
Легче газа в мире нету.
Я вхожу в состав воды,
Нефти, всяческой еды.
На планете я пришелец,
Космос — вот где я умелец.
Я — источник света звезд,
Жизнь на Землю я принес,
И в таблице элементов,
Попрошу заметить, первый!

(из театрализованного представления «Кто в таблице всех главнее?» С. Г. Такташевой, учителя химии школы в Иркутской области)

От водородной энергетики к водородной экономике

Источник: posta-magazine.ru

Переход на водород

Технологические решения для широкого использования самого эффективного топлива уже существуют

Водород — это самое энергоемкое и легкое вещество из всех видов топлива. Его производство не относится к инновациям — он производился миллионами тонн еще в советские времена, когда его использовали для производства аммиака для получения азотных удобрений.

Выйти из полноэкранного режима

Экспериментальная установка Wendelstein 7-X для исследования управляемого термоядерного синтеза. Грайфсвальд (Германия)

Развернуть на весь экран

Экспериментальная установка Wendelstein 7-X для исследования управляемого термоядерного синтеза. Грайфсвальд (Германия)

Фото: Getty Images

Водород и сегодня используют для производства удобрений, повышения качества бензина, улучшения свойств стали, а также в пищевой промышленности для производства маргарина и твердых кондитерских жиров методом гидрогенизации растительных масел. Без него не обходятся все процессы гидроочистки, гидрообессеривания, гидрокрекинга, регенерации катализаторов. Его также широко применяют для охлаждения генераторов на электростанциях.

С тех пор как появилась перспектива перехода на водородную энергетику с углеводородной, потребность в водороде увеличилась на порядки. Сегодня эта перспектива стала реальностью, поскольку примерно десять лет назад была решена одна из основных проблем с его хранением для дальнейшего использования в качестве автомобильного топлива. Вместо тяжелых, дорогих и небезопасных стальных баллонов для сжатого под высоким давлением водорода стали применять легкие композитные емкости из углепластика, которые прекрасно помещаются в легковых автомобилях. Кроме того, стало возможным получать водород прямо по месту употребления. Появление таких технологий зажгло для водородной энергетики зеленый свет.

Около 20 лет назад во всем мире начали появляться автомобили на водороде, и бывшие выставочные центры пилотных моделей превратились в салоны-магазины серийных образцов. Количество автомобилей на водородном топливе сегодня исчисляется тысячами. Их стоимость составляет около $50–60 тыс. Серийные автомобили на водороде есть у Toyota, Hyundai, Honda.

Предсерийные образцы тестируют Audi, Mercedes, BMW, Mazda, Ford и ряд других производителей. Все технические препятствия, столько десятилетий казавшиеся непреодолимыми, пройдены за считаные годы, и теперь вопрос только в экономической целесообразности для массового потребителя. В России такой автомобиль приобрел себе житель Красноярска, но в связи с отсутствием заправок в своем городе перевез машину в Москву и получает топливо в одном из научных институтов.

Как получить водород?

Для развития водородной энергетики нужно будет на государственном уровне решить вопрос, в каком виде доставлять водород к месту его получения. Дело в том, что водород содержится в очень многих видах ископаемых топлив.

«Наиболее дешевый водород получается методом паровой конверсии метана,— рассказывает заведующий отделом гетерогенного катализа Института катализа СО РАН Павел Снытников.— Другой способ — из аммиака. Для его транспортировки, как и для природного газа, в нашей стране даже существует трубопровод, так как аммиак сжижается всего при давлении 8,5 атмосферы. Третье решение — перевозка будущего водорода в виде метанола. В Китае метанол используют как автомобильное топливо. Но в России против метанола почему-то предубеждение, по-видимому, в связи с тем, что с давних пор у нас простой народ пил все, что горело, в том числе и метанол, и люди лишались зрения».

А вот получать его лучше всего там же, где будут потреблять, чтобы уйти от проблем транспортировки чистого водорода. Чтобы использовать водород, например, как автомобильное топливо, нужно закачать его в баллоны под давлением 700 атмосфер. Правда, на сжатие нужна дополнительная энергия.

Не меньше энергии требуется на сжижение водорода, так что один из подходящих способов его транспортировки — это перевозка в химически связанном состоянии, например в виде метана, из которого водород должен производиться там же, где будет использоваться. То есть до заправки везут метан, а уже на самой заправке устанавливается небольшое производство, например, конвертер метана в водород.

Но этот способ не очень хорош для экологии, поскольку на небольших производствах сложно обеспечить качественную очистку выбросов. Зато экономически он себя вполне оправдывает. Опыт Японии, Кореи и ряда других стран показал, что километр пробега на водороде выходит не дороже бензина. 4 кг водорода, закачанного в баллон, хватает примерно на 800 км пути обычного седана.

Получать водород можно практически из любого углеводородного топлива: из бензина, дизельного топлива или пропан-бутановых смесей. В Институте катализа им. Г. К. Борескова СО РАН ведется работа по гранту РНФ по тематике получения водорода из дизельного топлива. Также разрабатываются методы получения водорода даже из органических носителей, например из бор-гидридов.

Главные задачи на будущее развитие водородной энергетики — это не только получение водорода, но и его хранение. Жидкий водород можно хранить только при низких температурах, поэтому его использовали только в критически важных областях, например, как ракетное топливо.

Если отвлечься от автомобилей и обратить внимание на энергообеспечение более крупных стационарных объектов, например жилых или промышленных комплексов, то вся идеология водородной энергетики строится на ее связке с другими источниками энергии. Например, с возобновляемыми — гидро-, ветряными, солнечными электростанциями или с крупными атомными электростанциями. Производство такой энергии идет в одном режиме, а тратится потребителями она в другом, поэтому, когда есть излишки энергии, ее можно тратить на получение водорода даже из обычной воды методом электролиза.

Голубая мечта о зеленом водороде

Электролиз — это способ получения водорода из воды, который, к сожалению, требует больших энергозатрат, поэтому он оправдан только в тех случаях, когда вырабатываемую энергию необходимо запасти, пусть даже и с невысоким КПД. Лучше всего использовать для этого источники, где постоянно возникают достаточно большие излишки энергии.

Емкости аккумуляторов для ее сохранения не хватает, кроме того, аккумуляторы быстро разряжаются, а полученный методом электролиза водород — это гарантированный запас энергии, можно сказать, воплощение мечты о чистой энергии, так называемом зеленом водороде. К сожалению, пока всего 2% общего объема водорода в мире производится методом электролиза.

Читайте также:
Vmix программа что это

75% водорода получают из природного газа и 25% — сжиганием угля. Цены топлива, полученного по этим технологиям, также несопоставимы: $1,7 за 1 кг водорода из природного газа и $5–10 за водород, полученный электролизом. Впрочем, стоимость зависит от источника энергии. Например, от энергии АЭС зеленый водород вдвое дешевле ($3–5), чем от возобновляемых источников энергии.

Основные организации в России, заинтересованные в получении водорода — это компании «Росатом» и «Газпром». Атомные электростанции нуждаются в сохранении избытка энергии в виде водорода и дальнейшего его использования. А добывающая компания хочет перерабатывать природный газ в водород, имея соответствующие установки непосредственно в местах использования, например на автомобильных заправках. Для решения проблемы транспортировки водорода можно переводить его в спирты — метанол, диметиловый эфир, чтобы получать из них водород, что называется, «по требованию» для дальнейшего использования на энергоустановках. Это химия получения водородсодержащих компонентов, и она достаточно хорошо освоена.

Выйти из полноэкранного режима

Развернуть на весь экран

Как перестать сжигать топливо

Применение водорода в топливных элементах является самым экологичным. Разные топливные элементы используют водород при разных температурах и могут быть более или менее привередливы к его чистоте. Низкотемпературные топливные элементы работают на чистом водороде, а высокотемпературные вполне удовлетворяются синтез-газом.

Топливный элемент — это электрохимическое устройство, которое преобразует химическую энергию водорода в электрическую (процесс, обратный электролизу) с достаточно высоким КПД. Институт катализа СО РАН сотрудничает с российскими производителями топливных элементов — ГК «ИнЭнерджи» и Институтом проблем химической физики РАН, где были разработаны и созданы сверхлегкие топливные элементы для беспилотных летательных аппаратов.

В настоящее время там ведутся разработки более крупных топливных элементов для автомобильных передвижных платформ. Рынок топливных элементов еще только формируется, поскольку область их применения постоянно растет. Появляются новые возможности в разработке — осваивается новый экономический сектор.

Вопросы могут быть самые разные — например, обеспечение дальних трасс или камер видеонаблюдения источниками связи или возможность установки автономных вышек сотовой связи. Источники водородной энергии всегда работают как тандем «топливный элемент на водороде плюс аккумулятор». Аккумулятор способен сглаживать пиковые нагрузки, а топливный элемент обеспечивает длительную выработку электроэнергии.

Сегодня в мире на топливных элементах работают тысячи небольших энергоустановок. В США, Японии и некоторых странах Европы они уже около 30 лет снабжают водородной энергией небольшие частные поселки, большие и удаленные от города супермаркеты или промышленные объекты. В отличие от дизель-генераторов это намного более бесшумные системы, так что их широко используют как запасные источники энергии в случае сбоев в работе основного источника энергообеспечения.

Сколько стоит чистый воздух

В качестве грантового финансирования на развитие индустрии водородной энергетики некоторые страны ЕС ежегодно выделяют сотни миллионов евро, США — сотни миллионов долларов. Совокупные вложения Европы и США в эту отрасль исчисляются миллиардами. Сейчас многие компании во всем мире делают попытки использовать источники энергии на топливных элементах в самых разных областях. В ближайшие десятилетия может измениться сама концепция человеческого энергопотребления.

В России развитие топливных элементов исторически связано с космическими программами в середине ХХ века. Щелочные топливные элементы использовались во многих космических проектах, где требовались автономные энергоустановки.

В 2020 году правительство России утвердило энергетическую стратегию Российской Федерации на период до 2035 года и ключевые меры развития водородной энергетики. В этом же году был создан консорциум по водородной энергетике, куда вошли ведущие научные институты: Томский политехнический университет, Институт катализа СО РАН, Институт проблем химической физики РАН, Институт нефтехимического синтеза РАН, Самарский государственный технический университет и Сахалинский государственный университет.

В программе развития водородной энергетики РФ намечено создание водородных кластеров и пилотных проектов по производству и экспорту водорода. Планируется развитие первых коммерческих проектов производства водорода. Сегодня в РФ появляются отдельные пилотные проекты с использованием водородной энергетики, но до массового внедрения пока не дошло: скорее производители демонстрируют свою готовность к реализации подобных проектов в случае выделения финансирования со стороны, например, госкорпораций. Так, в конце 2019 года в Санкт-Петербурге был запущен трамвай на водородном топливе, а ОАО «Газпром» и ОАО «РЖД» в качестве пилотного проекта обсуждают возможность запуска поезда на Сахалине на топливных водородных элементах.

  • Журнал «Коммерсантъ Наука» №23 от 23.06.2021, стр. 21

Источник: www.kommersant.ru

Водородная концепция России

Правительство утвердило концепцию развития водородной энергетики России, которая предполагает создание высокотехнологичной экспортно-ориентированной отрасли с объемом экспорта до 50 млн тонн водорода к 2050 году. Главная идея концепции заключается в создании на территории страны сразу нескольких кластеров по выработке водорода, ориентированных в основном на экспорт как самого водорода, так и технологий его производства.

Потенциал мирового рынка

Согласно документу, текущий мировой спрос на водород составляет порядка 116 млн тонн в год, из которых на чистый водород приходится 74 млн тонн в год. Еще около 42 млн тонн водорода используется в смеси с другими газами в качестве сырья или топлива при производстве тепловой и электрической энергии. Более 95% мирового потребления водорода приходится на нефтепереработку и химическую промышленность, которые сами же его и производят. В структуре мирового производства чистого водорода 75% приходится на природный газ, почти весь остальной объем (23%) — на уголь. Доля производства электролизом в настоящее время составляет лишь 2%.

В настоящее время глобальный рынок водорода как энергоносителя отсутствует. Развитие технологий и масштабирование водородной энергетики в будущем смогут сформировать достаточно крупный рынок. Российская концепция исходит из того, что в будущем мировой рынок крупнотоннажного водорода будет развиваться подобно рынку нефти и СПГ с перевозками от центров производства к центрам потребления. Одновременно будут существовать локальные рынки, при которых небольшие производства и потребление водорода будут сосредоточены в рамках одних и тех же стран или небольших регионов.

Прогнозы развития мировой водородной энергетики и глобального рынка водорода очень неопределенные с очень большой вилкой оценок производства и потребления. Так, мировой спрос на водород может составить от 40 до 170 млн тонн в год к 2050 году в зависимости от темпов развития мировой низкоуглеродной экономики и скорости внедрения водородных технологий.

Экономика производства

Как отмечается в документе, наиболее экономически эффективными способами производства водорода являются методы паровой конверсии метана, газификации угля с улавливанием СО2 и электролиза воды на базе энергии атомных и гидростанции. Наиболее экологичным является способ производства водорода методом электролиза воды на базе ВИЭ, но он существенно дороже, чем другие методы.

Удешевить такое производство возможно за счет снижения затрат на электролизеры (в том числе за счет разработки новых типов), а также стоимости электроэнергии ВИЭА и АЭС. При таком подходе стоимость водорода, произведенного на базе возобновляемых источников, к 2050 году может снизиться до 2 долларов за килограмм и стать вполне сопоставимой с ценой водорода, полученного из ископаемых источников.

Российская водородная отрасль: плюсы и минусы

Концепция исходит из того, что в России производство водорода и водородных технологий будет ориентировано в первую очередь на экспорт. Потенциальные объемы экспорта водорода могут составить до 0,2 млн. тонн в 2024 году до 2 — 12 млн тонн в 2035 году и 15 — 50 млн тонн в 2050 году в зависимости от темпов развития мировой низкоуглеродной экономики и роста спроса на водород на мировом рынке.

Россия обладает рядом преимуществ для развития водородной энергетики. Среди них: 1. большой объем запасов газа и угля, а также значительный потенциал АЭС, ветряных и солнечных станций для производства дешевого низкоуглеродного водорода; 2) наличие недозагруженных генерирующих мощностей, 3) развитая нефтепереработка и химическая промышленность, где применяются технологии паровой конверсии метана и электролиза 4) развитая научно-техническая база и 5) выгодное географическое положение, которое дает возможность экспортировать водород в крупнейшие прогнозируемые центры его потребления в Европе и Азиатско-Тихоокеанском регионе.

В то же время существует ряд системных ограничений, сдерживающих развитие водородной энергетики. Это 1) высокая стоимость низкоуглеродного водорода по сравнению с традиционными энергоносителями; 2) отсутствие технологий улавливания, хранения, транспортировки и использования СО2; 3) отсутствие транспортной инфраструктуры; 4) отсутствие в настоящее время широкого спроса на водород как энергоноситель; 5) не проработанная нормативная база, в том числе в области безопасности; 6) более высокая стоимость капитала для реализации проектов по сравнению с ключевыми странами-конкурентами; 7) ограниченность программ государственной поддержки и низкий уровень инвестиций в исследования и разработки в области водородных технологий; 8) несовершенство национальной системы стандартизации и сертификации водородной энергетики; 9) высокая степень неопределенности в отношении перспектив развития водородной энергетики в мире.

Водородные экспортные кластеры и идеи развития внутреннего рынка

Согласно концепции, в России будут созданы три научно-промышленных кластера по производству водорода: Северо-Западный кластер с ориентацией на экспорт в Европу, Восточный кластер с ориентацией на экспорт в Азию и Арктический кластер с ориентацией на энергоснабжение территорий Арктики, а также экспорт водорода и энергетических смесей на рынок ЕС и АТР.

Читайте также:
Ms office что это за программа на Андроид

Дополнительно может быть создан Южный кластер, который будет ориентирован на использование ВИЭ при производстве водорода. Преимущество Южного кластера будет заключаться в близости к крупным экспортным портам.

Для развития внутреннего рынка водорода предлагается 1) увеличивать производство водорода на предприятиях, которые его выпускают в ограниченных объемах для собственных нужд, с тем, чтобы отправлять Н2 на экспорт 2) разработать опытные образцы автобусов, грузовых автомобилей и поездов и запустить их в крупных городах, 3) создать необходимые сети водородных заправочных станций; 4) использовать водород в качестве накопителя энергии в локальных энергосистемах с его последующим использованием для генерации электроэнергии; 5) запустить пилоты по использованию водорода в жилищно-коммунальном хозяйстве при условии подтверждения их безопасности и экономической эффективности.

Одновременно предлагается разработать меры стимулирования использования водорода и повышения его конкурентоспособности относительно других энергоресурсов, популярных в стране.

Меры государственной поддержки

Документ предлагает очень скромные меры государственной поддержки развития водородной энергетики в России. В частности, предлагается компенсировать часть затрат на научно-технические исследования, применять повышающий коэффициент к расходам на такие научные исследования для уменьшения налогооблагаемой прибыли организаций, выдавать гранты на разработку водородных технологий и создавать целевые фонды из бюджетных и внебюджетных источников.

Для стимулирования создания инфраструктуры предполагается использование механизмов государственно-частного партнерства, государственного финансирования и софинансирования инфраструктурных проектов, в том числе в рамках соглашений о защите и поощрении капиталовложений. К этой работе также должны быть подключены бюджеты субъектов РФ.

Этапы развития водородной энергетики в России

Развитие водородной энергетики в России планируется в три этапа.Первый этап (2021 — 2024 годы) предполагает создание водородных кластеров и реализацию пилотных проектов для достижения экспорта водорода до 0,2 млн тонн к 2024 году, а также применения водородных энергоносителей на внутреннем рынке.

На этом этапе должна быть создана необходимая законодательная и нормативная база, а также разработаны меры государственной поддержки водородной энергетики. В этот период предполагается провести запуск первых пилотных проектов производства водорода из ископаемых топлив, в том числе с применением технологии улавливания, хранения и использования углекислого газа, а также электролиза воды с использованием различных видов низкоуглеродной генерации. Одновременно планируется создание научно-технологических центров мирового уровня и полигонов для разработки отечественных технологий водородной энергетики

Второй этап (2025 — 2035 годы) предполагает запуск первых коммерческих проектов производства водорода с достижением объемов экспорта до 2 млн тонн, а в оптимистичном сценарии до 12 млн тонн в год к 2035 году.

На этом этапе планируются создание крупных экспортно ориентированных производств водорода, а также реализация пилотных проектов по применению водорода на внутреннем рынке. В этот период будет запущено уже серийное и массовое применение водородных технологий в различных секторах экономики России, созданы масштабные производства оборудования, электролизеров, топливных элементов, газовых турбин, водородных энергоустановок, водородных заправок, водородного транспорта и робототехники.

Именно в этот период ожидается возникновение мирового спроса на водород .

Третий этап (2036 — 2050 годы) предполагает широкомасштабное развитие мирового рынка водородной энергетики. Объемы поставок водорода на мировой рынок могут достигнуть 15 млн тонн к 2050 году, а в оптимистичном сценарии — 50 млн тонн.

Стоимость производства водорода на базе возобновляемых источников энергии приблизится к стоимости производства водорода из ископаемого сырья, что позволит начать реализацию крупных проектов по производству и экспорту низкоуглеродного водорода, произведенного на базе ВИЭ. На третьем этапе Россия планирует стать одним из крупнейших экспортеров водорода и энергетических смесей на его основе, а также промышленной продукции для водородной энергетики в страны Азиатско-Тихоокеанского региона и Европы.

На внутреннем рынке ожидается начало широкого коммерческого применения водородных технологий в сферах транспорта, энергетики и промышленности.

Источник: energypolicy.ru

«Газпром» и «Росатом» начнут производить «чистый» водород в 2024 году

Минэнерго подготовило план развития в России водородной энергетики. Водород должен стать одной из «зеленых» альтернатив нефти и газу, от которых ряд стран планируют отказаться. Производить его могут «Росатом», «Газпром» и НОВАТЭК

Фото: Максим Шеметов / Reuters

Фото: Максим Шеметов / Reuters

Минэнерго разработало и направило в правительство «дорожную карту» «Развитие водородной энергетики в России» на 2020–2024 годы, рассказал РБК представитель министерства. РБК ознакомился с документом; источник, близкий к одному из ведомств, подтвердил его подлинность. Россия планирует производить и экспортировать водород в связи с мировым трендом на отказ от углеводородной энергетики из-за ее негативного влияния на климат и экологическую ситуацию, следует из пояснения к «дорожной карте». Пока этот тренд создает угрозу для энергобезопасности России — одного из крупнейших поставщиков нефти, газа и угля в мире. Уже со следующего года правительство намерено формировать репутацию России как поставщика водорода, который является одной из альтернатив традиционным энергоносителям, объясняется в документе.

Фото:Sean Gallup / Getty Images

Как Россия будет развивать новую отрасль

  • В конце года чиновники разработают концепцию развития водородной энергетики, а также меры поддержки для пилотных проектов по производству водорода.
  • В начале 2021 года должны появиться стимулы для экспортеров и покупателей водорода на внутреннем рынке. Конкретные меры поддержки для водорода правительство пока не обсуждает, говорят два участника совещаний на эту тему.
  • Первыми производителями водорода станут «Газпром» и «Росатом», следует из «дорожной карты». Компании запустят пилотные водородные установки в 2024 году — на атомных электростанциях, объектах добычи газа и предприятиях по переработке сырья.
  • В 2021 году «Газпром» должен разработать и испытать газовую турбину на метано-водородном топливе.
  • До 2024 года «Газпром» будет изучать применение водорода и метано-водородного топлива в газовых установках (газотурбинных двигателях, газовых бойлерах и т.д.) и в качестве моторного топлива в разных видах транспорта.
  • «Росатом» в 2024 году построит опытный полигон для железнодорожного транспорта на водороде. Речь идет о переводе поездов на водородные топливные элементы на Сахалине, о котором в 2019 году объявили РЖД, «Росатом» и «Трансмашхолдинг», говорит один из участников обсуждения.

«Дорожную карту» доработают с учетом мнений министерств, которые прислали много замечаний, говорит источник РБК, близкий к одному из ведомств. Например, Минтранс попросил Минэнерго изменить сроки реализации и исполнителей по некоторым мероприятиям, говорит представитель министерства, не уточняя детали. Минпромторг направлял замечания в июне и июле, сказал РБК представитель ведомства. Минэкономразвития в целом поддерживает «дорожную карту», но предложило включить пункт о проработке обращения с углекислым газом (CO2), который образуется в результате производства водорода (при выделении из метана. — РБК), сказал представитель МЭР.

Как мир переходит на новое топливо

По оптимистичной оценке Hydrogen Council (ассоциация крупных международных компаний, куда входят Total, Toyota, BP, Shell и другие, в основном европейские и японские, корпорации), в 2050 году доля водорода в потреблении энергии составит 18%. Другие эксперты говорят о доли потребления 12–19% в Великобритании, США и ЕС. Германия уже приняла национальную водородную стратегию и к 2030 году может перевести на водород часть своих газопроводов, а в перспективе и отводы от «Северного потока» и «Северного потока-2» Opal и Eugal, по которым поставляется (в случае Eugal — будет поставляться) газ из России.

Водород уже стал общим местом в энергетических политиках развитых стран, и коронакризис только ускорил этот тренд: переход на чистую энергию зафиксирован в пакетах мер господдержки пострадавших экономик, говорит директор инфраструктурного центра EnergyNet Дмитрий Холкин.

Фото:Владимир Смирнов / ТАСС

Какими методами будут производить водород

Российские компании уже производят водород, но в основном для промышленности. Это дешевый и самый распространенный в мире так называемый серый водород из газа, его производство сопровождается выбросами CO2. Иногда такое топливо оказывается даже «грязнее» традиционных энергоносителей, писали эксперты энергоцентра бизнес-школы «Сколково».

Но производство водорода, которому посвящена «дорожная карта» по развитию водородной энергетики, будет чистым. «Газпром» нацелен на производство так называемого бирюзового водорода (также из газа, но с образованием в качестве побочного продукта сажи, а не углекислого газа), говорит старший аналитик энергоцентра «Сколково» Юрий Мельников. По его словам, он будет выпускаться близко к местам потребления водорода, на нынешних рынках сбыта природного газа — то есть, например, в Европе. Компания уже обсуждает пилотные проекты в ЕС, рассказывал в июле начальник отдела департамента перспективного развития «Газпрома» Константин Романов. Еще один вариант — производить водород в России и подмешивать его в газ. В старые трубы можно добавить до 20% водорода, а в газопроводы типа «Северного потока» — до 70%, оценивал «Газпром».

«Росатом» планирует производить так называемый желтый водород: он не сопровождается выбросом CO2, так как производится методом электролиза из воды. При производстве будет использоваться атомная электроэнергия, которую не все развитые страны поддерживают.

В «дорожной карте» указаны только две корпорации, но водородным бизнесом интересуется и НОВАТЭК, говорит федеральный чиновник. По его словам, компания активно изучает производство так называемого голубого водорода: также из газа, но с выбросом и последующим захоронением CO2. Пока проблема в том, что в России нет регламентов захоронения парниковых газов, говорит собеседник РБК. Об интересе НОВАТЭКа к водороду рассказывал и зампред правления компании Марк Джетвэй.

Читайте также:
Брандмауэр Windows 10 что это за программа

«Мы рассматриваем ряд пилотных проектов в области водородной энергетики: некоторые страны, прежде всего Европы, принимают стратегические решения по развитию чистой энергетики, и водород в будущем будет играть заметную роль в энергобалансе», — сказал РБК представитель НОВАТЭКа. По его словам, темп реализации проектов будет зависеть от роста потребностей рынка.

Страны ЕС готовы начать с импорта более «грязного» водорода, постепенно переходя на самый «чистый» — так называемый зеленый: это топливо производится из воды с помощью энергии солнца, ветра и т.д. «Росатом» активно развивает ветроэнергетику и также может производить «зеленый» водород, но пока о таких планах не заявлял, говорит один из участников совещаний на эту тему. Чем «зеленее» водород — тем дороже его производство, объясняет разницу федеральный чиновник.

Сколько это стоит

В пояснении к «дорожной карте» Минэнерго говорится, что реализация плана не потребует дополнительных расходов федерального бюджета. Но водородная экономика не появляется легко и бесплатно — помимо значительных бюджетных вливаний (например, в Японии затраты бюджета на НИОКР и субсидии достигают €300 млн в год) государства предпринимают и другие усилия: разрабатывают меры долгосрочного стимулирования инвесторов и технологических компаний, системы льгот и косвенных мер поддержки, говорит Мельников.

Например, «Росатом» уже привлек у государства деньги на водород. В этом году президент одобрил программу корпорации «Атомная наука, техника и технологии», куда входит и развитие водородных технологий. Финансирование составит 88,5 млрд руб., около половины — из федерального бюджета.

Будет ли конкуренция на рынке

«Газпром» оценивает водородный рынок Европы в 2050 году в €153 млрд, писал Bloomberg со ссылкой на презентацию компании. Минэнерго — в $32–164 млрд. Конкурентные преимущества России — наличие резервов производственных мощностей, близость к потенциальным потребителям (страны ЕС, КНР, Япония), а также наличие действующей инфраструктуры транспортировки, говорил «Ведомостям» замминистра энергетики Павел Сорокин.

По замыслу потребителей, водород может заместить в том числе природный газ. Пока единственным экспортером газа и владельцем газопроводов из России является «Газпром». Но в долгосрочной перспективе «Газпром» и «Росатом» могут стать конкурентами на водородном рынке, говорит партнер по электроэнергетике Vygon Consulting Алексей Жихарев. «Росатом» уже позиционирует себя как будущий крупный производитель: компания договорилась о совместном экспортно ориентированном проекте с Японией, обсуждает с Hyundai строительство инфраструктуры для водородных автомобилей. К 2050 году «Росатом» может производить 50 млн т водорода, говорил научный консультант гендиректора «Росатома» Николай Пономарев-Степной (в компании не прокомментировали это заявление).

Но сейчас вопрос регулирования рынка и будущей конкуренции между двумя гигантами не обсуждается — до этого слишком далеко, пока нужно запустить пилотные проекты, отмечает федеральный чиновник.

Представитель «Газпрома» не ответил на запрос РБК, в «Росатоме» отказались от комментариев.

Источник: www.rbc.ru

Водородная энергетика: начало большого пути

Ранее мы рассказывали про то, каким экологичным видом транспорта являются электробусы. Однако не упомянули один важный момент: c ростом числа электротранспорта городам потребуется больше электричества, которое зачастую получают экологически небезопасными способами. К счастью, сегодня мир научился получать энергию при помощи ветра, солнца и даже водорода. Новый материал мы решили посвятить последнему из источников и рассказать об особенностях водородной энергетики.

На первый взгляд, водород — идеальное топливо. Во-первых, он является самым распространенным элементом во Вселенной, во-вторых, при его сгорании высвобождается большое количество энергии и образуется вода без выделения каких-либо вредных газов. Преимущества водородной энергетики человечество осознало уже давно, однако применять ее в больших промышленных масштабах пока не спешит.

Водородные топливные элементы

Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах XIX века. Гроув пытался осадить медь из водного раствора сульфата меди на железную поверхность и заметил, что под действием электрического тока вода распадается на водород и кислород. После этого открытия Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.

Позже, в 1959 году, Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовалось правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.

Водородный топливный элемент из сервисного модуля «Аполлонов», вырабатывающий электричество, тепло и воду для астронавтов. Источник: James Humphreys / Wikimedia Commons

Сейчас топливный элемент на водороде напоминает традиционный гальванический элемент с одной лишь разницей: вещество для реакции не хранится в элементе, а постоянно поставляется извне. Просачиваясь через пористый анод, водород теряет электроны, которые уходят в электрическую цепь, а сквозь мембрану проходят катионы водорода. Далее на катоде кислород ловит протон и внешний электрон, в результате чего образуется вода.

Принцип работы водородного топливного элемента. Источник: Geek.com

С одной топливной ячейки снимается напряжение порядка 0,7 В, поэтому ячейки объединяют в массивные топливные элементы с приемлемым выходным напряжением и током. Теоретическое напряжение с водородного элемента может достигать 1,23 В, но часть энергии уходит в тепло.

С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД — 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%. Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий. КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания.

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них — процесс добычи водорода.

Проблемы добычи

Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Трубчатая печь для паровой конверсии метана — не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро

Более удобный и простой метод — электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа — большие энергозатраты, необходимые для проведения реакции.

То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество — водород— электричество», в которых получение энергии становится возможным без внешней подпитки. Примером такой системы является разработка Toshiba H2One.

Мобильная электростанция Toshiba H2One

Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м 3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м 3 водорода станции требуется до 2,5 м 3 воды.

Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.

Сейчас Toshiba H2One используется лишь в нескольких городах в Японии — к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.

Монтаж системы H2One в городе Кавасаки

Водородное будущее

Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров — при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.

Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но в ближайшем будущем массовое внедрение технологии вряд ли произойдет, необходимо еще решить ряд проблем, связанных с производством и эксплуатацией специальных энергоустановок, снизить их стоимость. Когда технологические барьеры будут преодолены, водородная энергетика выйдет на новый уровень и, возможно, будет так же распространена, как сегодня традиционная или гидроэнергетика.

  • Блог компании Toshiba
  • Энергия и элементы питания
  • Экология

Источник: habr.com

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru