Программа область определения функции

Содержание

Синонимы: область допустимых значений или сокращенно ОДЗ. Первое, с чем Вы сталкиваетесь при изучении различных функций или же при построении графиков — это область определения функции.

Определение:

Областью определения называется множество значений, которые может принимать x. Обозначение D(f).

Как же это правило применить к заданной Вам функции?

В математике имеется достаточно небольшое количество элементарных функций, область определения которых ограничена. Все остальные «сложные» функции — это всего лишь их сочетания и комбинации.

1. Дробная функция — ограничение на знаменатель.

2. Корень четной степени — ограничение на подкоренное выражение.

3. Логарифмы — ограничение на основание логарифма и подлогарифмическое выражение.

3. Тригонометрические tg(x) и ctg(x) — ограничение на аргумент.

Для тангенса:

на графике тангенса

Алгебра 9 класс. Область определения функции

Для котангенса:

на графике котангенса

4. Обратные тригонометрические функции.

Пример 1 Пример 2
Пример 3 Пример 4
Пример 5 Пример 6
Пример 7 Пример 8
Пример 9 Пример 10
Пример 11 Пример 12
Пример 13 Пример 14
Пример 15 Пример 16

9 класс, 15 урок, Определение числовой функции. Область определения, область значения функции

Пример нахождения области определения функции №1

Нахождение области определения любой линейной функции, т.е. функции первой степени:

y = 2x + 3 — уравнение задает прямую на плоскости.

Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?

Читайте также:
Программа которая рифмует слова

Попробуем подставить значение х=0

Так как y = 2·0 + 3 = 3 — получили числовое значение, следовательно функция существует при взятом значении переменной х=0.

Попробуем подставить значение х=10

так как y = 2·10 + 3 = 23 — функция существует при взятом значении переменной х=10 .

Попробуем подставить значение х=-10

так как y = 2·(-10) + 3 = -17 — функция существует при взятом значении переменной х=-10 .

Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.

Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.

Следовательно, функция существует для любого значения x ∈ R или запишем так: D(f) = R

Формы записи ответа: D(f)=R или D(f)=(-∞:+∞)или x∈R или x∈(-∞:+∞)

Для любой функции вида y = ax + b областью определения является множество действительных чисел.

Пример нахождения области определения функции №2

Задана функция вида:

y = 10/(x + 5) — уравнение гиперболы

Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не

обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.

При х = 0 имеем y = 10/(0 + 5) = 2 — функция существует.

При х = 10 имеем y = 10/(10 + 5) = 10/15 = 2/ 3 — функция существует.

При х = -5 имеем y = 10/(-5 + 5) = 10/0 — функция в этой точке не существует.

Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует.

x + 5 = 0 → x = -5 — в этой точке заданная функция не существует.

Для наглядности изобразим графически:

На графике также видим, что гипербола максимально близко приближается к прямой х = -5 , но самого значения -5 не достигает.

Видим, что заданная функция существует во всех точках действительной оси, кроме точки x = -5

Формы записи ответа: D(f)=R или D(f)=(-∞;-5) ∪ (-5;+∞) или x ∈ R или x ∈ (-∞;-5) ∪ (-5;+∞)

Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя.

Пример нахождения области определения функции №3

Рассмотрим пример нахождения области определения функции с корнем четной степени:

Так как квадратный корень мы можем извлечь только из неотрицательного числа, следовательно, функция под корнем — неотрицательна.

Решим простое неравенство:

2х — 8 ≥ 0 → 2х ≥ 8 → х ≥ 4

Читайте также:
Программа для проверки sd карты на объем

Заданная функция существует только при найденных значениях х ≥ 4 или D(f)=[4 ;+∞) или x ∈ [4 ;+∞) .

На графике видим, что функция существует для найденных значений х : х ≥ 4 или D(f)=[4 ;+∞) или x ∈ [4 ;+∞) .

При попытке подставить вместо х значения, отличные от найденных, под корнем получим отрицательное число, те в этих точках функция не существует.

Если заданная функция содержит квадратный корень (или корень любой четной степени), то обязательно накладывается условие неотрицательности (≥0) на подкоренное выражение. Если квадратный корень находится в знаменателе функции, у которой мы находим область определения, то на подкоренное выражение накладывается условие положительности (>0), так как знаменатель всегда должен быть отличен от нуля.

Пример нахождения области определения функции №4

Рассмотрим пример нахождения области определения функции с корнем четной степени в знаменателе:

В числителе имеем линейную функцию, область определения которой множество всех действительных чисел. (см. пример 1)

В знаменателе — квадратный корень, накладывает условие на подкоренное выражение, не забывая о том, что знаменатель всегда отличен от нуля.

x 2 — 4x + 3 > 0 → (x — 1)(x — 3) > 0

Решим строгое неравенство методом интервалов:

Видим, что функция положительна на следующих интервалах: x∈(-∞;1)∪(3;+∞)

Нашли такие значения переменной х, при которых функция существует — нашли ОДЗ функции.

Пример нахождения области определения функции №5

Рассмотрим пример нахождения области определения функции с корнем нечетной степени:

Имеем дело с корнем нечетной степени. Так как корень нечетной степени существует при любых значениях подкоренного выражения, то заданная дробная функция под корнем может принимать любые значения.

В числителе дробной функции — уравнение первой сnепени, которое существует при любых значениях переменной. Знаменатель любой дроби отличен от нуля. Следовательно, при нахождении ОДЗ заданного выражения имеем дело лишь с одним ограничением — ограничение на знаменатель дроби.

Пример нахождения области определения функции №6

Рассмотрим пример нахождения области определения логарифма:

Простенький пример на область определения логарифмической функции.

Помним, что основание логарифма положительно и отлично от нуля. Подлогарифмическое выражение положительно:

Покажем на числовой прямой:

Получили ОДЗ: x∈(8;9)∪(9;+∞)

Пример нахождения области определения функции №7

Задана функция вида:

1 ограничение основывается на наложении ограничения на знаменатель дроби (отличен от нуля):

Второе ограничение — подлогарифмическое выражение положительно:

Т.е. для определения области определения заданной функции необходимо решить систему:

Читайте также:
Как увеличить громкость на Андроид программа

Необходимо решить каждое из ограничений системы по отдельности и пересечь получившиеся результаты.

Допускаю, что читатель самостоятельно может это проделать и перехожу к разбору следующего примера.

Пример нахождения области определения функции №8

Рассмотрим следующий пример:

Имеем дело с корнем четной степени, следовательно первое ограничение на подкоренное выражение:

Имеем дело с логарифмом, следовательно ограничение на подлогарифмическую функцию:

Таким образом для определения области определения исходной функции необходимо решить систему неравенств:

Каждое из неравенств решим по отдельности.

Первое неравенство будем решать методом интервалов: найдем корни каждого из выражений неравенства, вынесем их на координатную плоскость и расставим знаки неравенства в каждом из полученных интервалов.

Выносим на координатную прямую:

Объясню как расставлены знаки в каждом из интервалов:

Значения левее 6/7 нет смысла рассматривать, так как логарифм для этих значений не существует.

1-ый интервал: (6/7;1]

Основание логарифма больше единицы, следовательно функция возрастающая. В корне x=1 логарифм меняет свое значение с » — » на » + «.

Наглядно покажу на графике:

Имеем: линейная функция (13 — x)

Пример нахождения области определения функции №9

Рассмотрим следующий пример:

Источник: matecos.ru

Найти область определения функции

Областью определения функции (y=fleft(x right)) называется множество всех значений (x), для которых функция имеет смысл.
Область значений функции — это множество значений, которые принимает функция в результате ее применения. С помощью нашего решебника вы можете находить область определения и множество значений функции. Ниже приведены примеры команд. Скопируйте и вставьте в строку решателя или просто наберите ваш пример а затем нажмите кнопку «Решить». Найти область определения функции

domain of f(x) = x/(x^2-1)
domain of sqrt(sin(x))

Найти множество значений функции

range of x^2 — x — 1
range of e^(-x^2)

Найти область определения и множество значений функции

domain and range of (x^2+1)/(x^4-1)

Найти область определения и множество значений функции нескольких переменных

domain and range of z = x^2 + y^2
domain of f(x,y) = log(1-(x^2+y^2))

Источник: upbyte.net

Найти одз в уравнении онлайн

Областью определения функции называется множество всех значений аргумента при которых значение функции определено. Иными словами, если у нас задана некоторая функция , то область её определения — это все те значения которые мы можем подставить в уравнение и получить результат отличный от бесконечности и/или деления на ноль.

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru