
Достаточно часто в личке ко мне обращаются люди с просьбой дать ссылки на полезные сайты, нужную информацию по программированию микроконтроллеров, необходимые программы и т.п. находясь при этом в самом начале своего познания микроконтроллеров. Сам я проходил через это буквально полтора года назад, имея нулевые знания и знаю, насколько это сложно, дать себе первоначального пинка, разобраться в лавине информации по микроконтроллерам, которую выдают поисковики, когда на тебя обрушивается куча непонятной информации и т. п.
Постараюсь объяснить на простом языке, для людей, умеющих держать паяльник, знающих, что такое цифровая микросхема логики, умеющих читать схемы и пользоваться мультиметром.
Микроконтроллеры бывают разных фирм, которые делают одно и тоже дело, но разными методами. Сравнить это можно с человеческими расами: европейцы, китайцы и африканцы например. Я лично работаю с микроконтроллерами фирмы Атмел, про них и буду говорить. Ну уж пошло сравнение с расами, пускай это будут европейцы.) Программы для микроконтроллеров пишут на языках программирования.
Как Запрограммировать Микросхему ⚒️ без программаторов компьютера и обвеса
Я рекомендую начать с языка Си. Это древний и простой язык. Для написания текста програмы используют программы компиляторы. Они позволяют создавать, редактировать и переваривать написанный программистом текст программы в код (прошивку), который можно загрузить (прошить) в микроконтроллер. Таких программ есть множество.
Пример для Атмел: Code VisionAVR, родная от Атмел AVR Studio, Bascom-avr и ещё.
Эти программы делают одно и тоже дело, но своими методами, особенностями достоинствами и недостатками. При это текст Си в тих программах компиляторах немного отличается, но в общем похож. Можно сравнить с различием украинского, русского и белорусского языка. Я использую Code VisionAVR, что и советую начинающим.
Далее я приведу простой текст программы, написанный на языке Си в компиляторе Code VisionAVR для микроконтроллера ATTiny13A. В конце темы есть проект, прошивка и проект для эмулятора протеуса.
Микроконтроллер в этой программе умеет делать простую вещь: при помощи кнопки менять логическое состояние на двух выходах, при этом короткое нажатие меняет состояние первого выхода а длинное — второго. В автомобиле например эту схему можно применить для управления одной кнопкой обогревом заднего стекла (которая есть у многих штатно) и добавленным обогревом зеркал. Нажал коротко на кнопку — сработал обогрев стекла, нажал ещё — обогрев стекла выключился. Если нажать и удерживать кнопку, то через какое-то время включиться обогрев зеркал. Если нажать и удерживать кнопку повторно — обогрев зеркал отключится.
Для понятия текста нужно знать грамматику, правила писанины языка Си, этого материала в интернете предостаточно. Так же желательно ознакомиться хотя бы с материалом, по использованию мастера создания проектов в CodeVisionAVR.
Оператор else переводится не как ещё а как иначе
Оператор if и else всегда работают в паре, сначала идет if затем else. Оператор else можно не использовать совсем, если он не нужен.
В нашей ситуации алгоритм можно описать так:
если (нажата кнопка подключенная к порту PB0)
то выполняем кучку кода;
>
иначе (кнопка не нажата)
выполняем эту кучку кода;
>
Так как это все находится внутри главного цикла, то этот код будет выполняться по кругу, будет постоянно опрашиваться кнопка и будет выполняться нужная кучка кода
Теперь рассмотрим кучку кода, которая выполняется, если кнопка нажата:
Операторы можно вкладывать друг в друга, как матрешку. то есть выполняется одно условие, потом если условие сработало, то другое внутри первого условия и т.д.
Если переменное значение trig равняется нулю, то выполняем инкремент переменной b Инкремент — операция увеличения значения, хранящегося в переменной, на 1. То есть при проходе выполнения кода, если процессор натыкается на команду инкремента b++, то процессор прибавляет единичку в число, которое находится в переменной b
Так же здесь применяется упрощенная «орфография» написания условия и команды, без скобок и >:
Такое представление используют, если после условия всего одна команда.
Немного отвлеклись, возвращаемся:
if (trig==0) b++; — если значение переменной равно нулю (а оно у нас равно нулю) то выполняем инкремент переменной b — переменная в была равна нулю, теперь стало единице.
Если переменная b больше ста, то выполняем кучку кода внутри скобок.
Переменная b за каждый круг цикла прибавляется на единичку и в итоге через сто «кругов» главного цикла выполниться условие, которая находится далее внутри скобок и >
Теперь рассмотрим что же там делается, если нажата кнопка, если прошло сто кругов цикла:
if (PINB.2==0)PORTB.2=1;
else PORTB.2=0;
trig=1;
b=0;
Здесь мы видим ещё одно условие (жирная такая матрешка получилась))
if (PINB.2==0)PORTB.2=1;
Если регистр состояния выходного порта PB, а точнее PB2 равен нулю, то меняем его состояние на единичку PORTB.2=1.
else PORTB.2=0;
Иначе пишем в регистр нолик. Или если по-другому: если регистр состояния выходного порта PB2 равен единице, то меняем его на ноль.
Короче если происходит выполнение этих условий и команд, то меняется логическое состояние выхода 2 (PB2) на схеме.
Если полностью описать: если нажата кнопка, если прошло сто кругов главного цикла, то меняем логическое состояние выхода 2 — PORTB.2 в коде он же порт PB2 на схеме.
Как уже стало понятно этот кусок кода отрабатывает длительное нажатие кнопки.
Но этого мало, дальше ещё есть две выполняемые команды присвоения:
trig=1; присвоение единице этой переменной необходимо, что бы описанное выше условие работы инкремента b++ перестало работать
b=0; обнуляем переменную b.
В итоге при длительном нажатии кнопки, условие при котором меняется состояние порта PB2 выполняется единожды, до тех пор, пока кнопка не будет отжата кнопка, ибо инкремент не будет работать и условие if (b>100) больше не сработает, если тупо нажать кнопку и не отпускать совсем.
Теперь вторая часть кучки кода, которая следует за первым условием:
else
if (b>4)
if (PINB.1==0)PORTB.1=1;
else PORTB.1=0;
b=0;
>
b=0;
trig=0;
>
Если кнопка отжата:
Опишем её с конца:
trig=0; присваиваем переменной trig значение ноль. Необходимо, что бы после длительного нажатия, когда наступит последующее отжатие кнопки микроконтроллер снова был готов к нажатиям кнопки ( срабатывало условие инкремента if (trig==0) b++;)
b=0; При не нажатой кнопке значение переменной b равняется нулю.
if (b>4)
if (PINB.1==0)PORTB.1=1;
else PORTB.1=0;
b=0;
>
Подробнее:
if (b>4)
Если значение переменной b больше четырех, то выполняем следующий код:
if (PINB.1==0)PORTB.1=1;
else PORTB.1=0;
Если состояние порта BP1 равно нулю, то делаем единицу, если нет, то ноль.
Это условие и команда отрабатывает кроткое нажатие кнопки. Если нажата кнопка, то начинает работать инкремент b++; значение которого начинает увеличиваться. Если отжать кнопку и при этом значение переменной b будет больше четырех ( но меньше ста — а то сработает длинное нажатие) то состояние выходного порта PB1 (он же выход 1 на схеме, он же PORTB.1 в коде) поменяется, сработает алгоритм короткого нажатия кнопки.
Если значение переменной b при отжатии меньше четырех, то условие не срабатывает и ничего не происходит. необходимо для работы «дребезга контактов» и ложных срабатываний.
И последнее это присвоение переменной b нулевого значения, что бы обработка алгоритма короткого нажатия происходило единожды.
В оконцовке главного цикла виднеется команда:
Это задержка в главном цикле. То есть, выполняется пошагово команды, затем процессор натыкается на команду delay_ms(10); и начинает её выполнять. В итоге процессор будет 10 миллисекунд ждать и ничего не делать в этой строчке, затем опять приступит к выполнению команд.
Находясь в одном общем цикле, скорость нарастания значения инкремента b++ зависит от времени задержки, указанной в delay_ms.
Команда delay_ms находится в библиотеке задержек #include , которую мы для этого и включили в начале кода.
Как видно из описания, длинное нажатие срабатывает от фронта сигнала нажатия кнопки ( начинает работать инкремент) а короткое нажатие кнопки — по спаду, то есть срабатывает по отжатию кнопки.
Вообще выполняемая здесь последовательность: условие + инкремент достаточно часто используемая команда и в языке Си присутствует отдельный оператор для этого for
Архив с прошивкой, исходником и моделью Протеуса:
umat.ru/files/Button_13.zip
ВНИМАНИЕ!
Архив перезалил 22 сентября 2014 года, обнаружил косяк в выставленной частоте в проекте. Теперь тактовая частота 1.2 Мегагерца, при этом фьюзы стоят по дефолту и их при прошивке трогать вообще не надо
Источник: www.drive2.ru
Что нужно для программирования микроконтроллеров?
Теперь, когда мы уже ознакомлены с некоторыми возможностями и функциями микроконтроллеров, естественно, возникает логичный вопрос: что нужно для программирования микроконтроллеров? Какие необходимы программы и устройства, где их взять?

Для того чтобы микроконтроллер мог решать задачи и выполнять определенные функции, его нужно запрограммировать, т. е. записать в него программу или же код программы.
Структура и порядок написания программы
Первым делом, прежде чем приступить к написанию любой программы, а точнее кода программы, следует четко представлять, какие функции будет выполнять микроконтроллер. Поэтому сначала нужно определить конечную цель программы. Когда она определена и полностью понятна, тогда составляется алгоритм работы программы. Алгоритм – это последовательность выполнения команд. Применение алгоритмов позволяет более четко структурировать процесс написания кода, а при написании сложных программ часто позволяет сократить время, затрачиваемое на их разработку и отладку.
Следующим этапом после составления алгоритма является непосредственное написание кода программы. Программы для микроконтроллеров пишутся на языке Си или Ассемблере. Только Ассемблер больше относится к набору инструкций, нежели к языку программирования и является языком низкого уровня.

Программирование микроконтроллеров AVR через программатор Microchip PicKit2
Если вы, как и я, используете в своих конструкциях как микроконтроллеры PIC, так и чипы AVR, было бы удобно для программирования обеих линеек микросхем использовать один и тот же программатор. Кстати, не так давно Microchip приобрела компанию Atmel и фактически сейчас обе линейки выпускаются одной и той же компанией. Посему можно предположить окончание многолетнего холивара на тему что же лучше. Оба типа контроллеров имеют свои недостатки и преимущества, но это тема для другой статьи или видеоролика.
Случилось так что когда-то давно я, как и многие другие, начал знакомство с миром микроконтроллеров с какой-то конструкции на микроконтроллере PIC16F84. Через много лет я купил свой первый фабричный программатор для контроллеров PIC. Это был фирменный (оригинальный) PicKit2, который я привез с международной конференции Microchip, которая проходила в Питере в 2009 году.

Купил я его тогда на конференции с хорошей скидкой в 50 процентов. Сейчас можно купить клон такого программатора на Алиэкспресс очень дешево и он будет работать не хуже оригинального. Или, в крайнем случае сделать клон программатора самому, например как описано в этой статье.

Нужно сказать, что программатор PicKit2 уже не поддерживается компанией Microchip (в плане обновления прошивки или управляющей программы) но это не мешает ему отлично работать и по сей день. Сейчас Microchip продвигает более новую версию — PicKit3, который внешне выглядит почти также как и вторая версия. С третьим я пока не имел дела, для моих задач мне вполне хватает второго.
Обычно если мне нужно запрограммировать микроконтроллер Pic я использую программатор PicKit2 с его родной программой PicKit2.61, а если я хочу прошить, например, контроллер ATMega16, то делаю это через программатор USBAsp который можно купить в Китае за полтора доллара.

Однако сейчас появилась возможность использовать для прошивки как PIC так и AVR один программатор — Microchip PicKit2 или его клон, с использованием Бесплатной программы AVRDude, которая сейчас поддерживает PicKit2. Несмотря на то, что AVRDude — это консольное приложение и в чистом виде требует от пользователя навыков работы с командной строкой, но сейчас есть очень хорошая программа — оболочка для AVRDude, которая называется AVRDUDESHELL и позволяет очень удобно работать с AVRDude, не заморачиваясь с командной строкой. Фактически, работая в AVRDUDESHELL вы можете вообще не знать о существовании AVRDude. Скачать программу AVRDUDESHELL можно здесь. Сама AVRDude уже входит в состав AVRDUDESHELL и отдельно ее устанавливать не нужно.
Программатор PicKit2 имеет шести контактный разъем. Для программирования микроконтроллеров PIC используются первые пять контактов. Шестой — дополнительный, при программировании пиков он не задействован.
Разъем программирования PicKit2
VPP / MCLR
VDD напряжение питания целевого устройства
VSS земля
ICSPDAT / PGD
ICSPCLK / PGC
AUX
Для программирования контроллеров AVR нам потребуется сделать специальный шлейф и использовать все шесть контактов PicKit2. Шлейф делаем в соответствии с таблицей ниже:

Шлейф может выглядеть например так:

Для работы подключаем PicKit2, шлейфом соединяем его с программируемым устройством (или адаптером микроконтроллера с Zif панелькой), Запускаем AVRDUDESHELL и выбираем в списке программаторов нужный нам PicKit2. Загружаем файл прошивки и программируем контроллер. Всё предельно просто.
Возможно вам потребуется USB драйвер программатора PicKit2. ВЫ можете скачать его по это ссылке. Он входит в состав родной программы Microchip PicKit2 V2.61. На сайте Microchip вы ее уже не найдете, но можете скачать здесь (см. ниже). Эта небольшая программка пригодится вам и для прошивки контроллеров PIC.
Источник: musbench.com