Программа которой задаешь вопрос а она отвечает

Здравствуйте, приложение хорошая, я бы хотела предложить добавить голосовую. Иногда людям легче говорить чем писать)
Знаете иногда я очень устаю и откладываю, так как писать мне лень, хочется просто говорить свои мысли но там нету кнопок чтобы записать аудио.

Helen Sun 8 , 31.03.2019

⚠️Help me⚠️

I remember my password. What can I do?

Конфиденциальность приложения

Разработчик MyoungBo Seo указал, что в соответствии с политикой конфиденциальности приложения данные могут обрабатываться так, как описано ниже. Подробные сведения доступны в политике конфиденциальности разработчика.

Данные, используе­мые для отслежи­вания информации

  • Геопозиция
  • Идентифика­торы
  • Данные об использова­нии
  • Диагностика

Связанные с пользова­телем данные

Может вестись сбор следующих данных, которые связаны с личностью пользователя:

  • Геопозиция
  • Контактные данные
  • Идентифика­торы
  • Данные об использова­нии
  • Диагностика

Конфиденциальные данные могут использоваться по-разному в зависимости от вашего возраста, задействованных функций или других факторов. Подробнее

БЛОНДИНКИ ОТВЕЧАЮТ НА ВОПРОСЫ ШКОЛЬНОЙ ПРОГРАММЫ / 10 глупых вопросов блондинке

Информация

Провайдер MyoungBo Seo
Размер 9,7 МБ

Совместимость iPhone Требуется iOS 13.2 или новее. iPad Требуется iPadOS 13.2 или новее. iPod touch Требуется iOS 13.2 или новее. Mac Требуется macOS 11.0 или новее и компьютер Mac с чипом Apple M1 или новее.

русский, английский, венгерский, голландский, греческий, индонезийский, испанский, итальянский, корейский, немецкий, польский, португальский, сербский, турецкий, упрощенный китайский, французский, чешский, японский

Цена Бесплатно

  • Сайт разработчика
  • Поддержка приложения
  • Политика конфиденциальности
  • Сайт разработчика
  • Поддержка приложения
  • Политика конфиденциальности

Источник: apps.apple.com

Обзор приложения «Вопрос-ответ»

Магия простых программ

Мобильное приложение для Андроид устройств «Вопрос-ответ». Его я разработал в результате прохождения бесплатного мини-курса на образовательной платформе Нетология. Курс «Разработка мобильных приложений с нуля» не даёт обширных знаний, но позволяет создать полноценное мобильное приложение. Разработка идёт в Андроид студии на языке Котлин.

Идея приложения довольна тривиальна. Пользователь задает свой вопрос по-английски. Вопрос можно написать в поле ввода или задать голосом, нажав на зеленоватую кнопку с микрофоном. Приложение переадресует вопрос к системе WolframAlpha по API. Полученные ответы будут отображены списком, который можно прочитать пролистав вниз или можно прослушать выбранный касанием ответ.

Вопрос Ребром — Денис Кукояка

Пользователь будет проинформирован, если ответ не удалось получить из-за отсутствия подключения к системе или некорректного вопроса. Прослушивание длинного ответа можно прервать по кнопке «Стоп» в меню. Для тех, кто английским языком не владеет, пользы от применения приложения будет мало. Вопросы перевода с языка на язык тоже можно решить, но это уже выходит за рамки данного приложения.

Технологии

В процессе разработки приложения удалось ознакомиться и применить следующие технологии :

  • Использование элементов управления библиотеки «Material Design»
  • Использование сервиса WolframAlpha по API
  • Создание пользовательского меню
  • Использование плавающей кнопки FloatingActionButton
  • Использование элементов ввода и отображения списка
  • Применение Coroutine для длительных операций сетевого обмена
  • Отображение кругового ProgressBar во время длительной операции сетевого обмена
  • Задействование встроенного голосового интерфейса Андроид для получения вопросов и озвучивания ответов — служба распознавания речи (класс SpeechRecognizer) и синтезатор речи (класс TextToSpeech)
  • Создание и применение пользовательской иконки приложения

Код

Приведу код единственного файла на языке Котлин, в котором и реализовано всё вышеперечисленное (ну кроме макета, разумеется, хотя и там всё просто) :

Конечно, приложению «Вопрос-ответ» до Алисы или Маруси ещё очень далеко. Но построив такое приложение, разработчик уже будет понимать технические принципы работы подобных приложений. Вряд ли наше приложение при на наличии более тяжеловесных коллег «по цеху» будет применимо на практике. Но в учебных целях его разработка очень полезна.

Читайте также:
Программа которая копирует файлы с флешки

Успехов Вам на просторах Котлин Андроид разработки !

Источник: taaprograms.ru

Как Маруся отвечает на вопросы пользователей обо всём на свете

Привет, это команда ответов на вопросы Маруси. Мы все привыкли к тому, что голосовые помощники отвечают на любые вопросы. Не всегда правильно, но обычно вполне толково и с пользой. А вы когда‑нибудь задумывались, как это устроено? Сейчас расскажем на примере нашей Маруси.

Материал состоит из двух частей, это первая часть. В ней мы дадим поверхностный обзор того как устроена Маруся, локализуем место навыка «ответов на вопросы» и расскажем на концептуальном уровне, как можно решать эту задачу.

Почему вода мокрая?

Многие пользователи любознательны и ожидают, что Маруся сможет ответить на любые информационные вопросы. Например, «Сколько лет было Пушкину, когда он умер?», «Сколько кораблей было в экспедиции Магеллана?», «Почему унитаз так называется?» и множество других.

Очевидно, что писать ответы на все вопросы вручную бессмысленно, ведь количество вопросов бесконечно. Поэтому на помощь приходит машинное обучение в сочетании с поисковыми технологиями, сегодня это безальтернативный подход в любых голосовых помощниках. Благодаря ему Маруся может поддержать вас полезным ответом в любой жизненной ситуации, например: «Что такое стаксель?» или «Кто такой эндермен в майнкрафте?».

Что такое вопрос?

Прежде чем рассказывать про ответы, вкратце объясним, а как Маруся вообще понимает, что её спрашивают. Когда вы обращаетесь к ней, она это определяет, записывает вашу речь и отправляет на сервер. Там голос распознаётся и преобразуется в текст (ASR — Automatic Speech Recognition).

Теперь нужно классифицировать обращение: пользователь захотел просто поболтать с Марусей, дал ей команду или о чём‑то спросил? Этим занимается компонент «матчинг». Он выбирает подсистему, ответ из которой наилучшим образом соответствует запросу пользователя. Некоторые вопросы сильно похожи на фразы для других скиллов Маруси и от качества работы матчинга сильно зависит конечный результат (см. таблицу с примерами).

Запрос в навык фактов

Запрос в другой навык

При какой температуре отменяют занятия в Новосибирске?

Какая температура в Новосибирске?
→ (Погода)

Какой самый популярный фильм с Киану Ривзом?

Нравятся ли тебе фильмы с Киану Ривзом? → (Болталка)

Кто главный персонаж сказки Пушкина
«О рыбаке и рыбке»?

Сказку о рыбаке и рыбке. →
(Аудиокниги)

Самый новый Кадиллак это какой?

Давай это новый кадиллак. → (Музыка)

Как видите, даже небольшие различия в формулировке могут приводить к изменению скилла, а значит и другим результатам. В скилл ответов на вопросы отправляются самые разные запросы, как сформулированные в виде вопросов («В каком году построили Великую Китайскую стену?»), так и выглядящие как поисковый запрос («Китайская стена, год постройки»), и в обоих случаях Маруся должна понять, что это информационный запрос и ей нужно найти и сообщить некую объективную информацию. А вот фраза «Маруся, как дела?» — тоже вопрос, но он является не информационным запросом, а приглашением к общению, это не информационная потребность. Такие фразы обрабатываются «болталкой», как и фразы о субъективном отношении Маруси к каким‑либо явлениям. В некоторых случаях, таких как погода, информационный запрос передаётся отдельной подсистеме, предоставляющей более удобные и актуальные данные для удовлетворения запросов пользователя.

Кроме того, вопросы можно поделить на хорошиеи плохие. Хорошие — это ясно озвученные запросы, из текста которых полностью понятен смысл спрашиваемого. А плохие — это нечётко сказанные или обрывочные, которые для хорошего ответа требуется уточнить. Например, дети часто не могут внятно и чётко сформулировать вопрос к Марусе.

Или человек начинает о чём‑то спрашивать, но задумывается, как бы это сказать, ну, это… и, вот, короче… и алгоритмы Маруси уже решили, что человек закончил говорить, и пытаются как‑то обработать услышанные слова. Хорошие вопросы идут по стандартному процессу формирования ответов, а плохие — по отдельному, их мы тоже обрабатываем, но это уже другая тема.

Читайте также:
Как проверить скорость работы программы python

Качество вопроса

Примеры

Хорошие

что такое цвет?
является ли пиэлектазия почечною недостаточностью?
почему собака часто пукает?
что обязана делать уборщица пятерочки?

Поисковые

синонимы к слову говорить
корейский плакат
страница двадцать один упражнение десять второй класс первая часть
площадь македонии,
императрица значение в картах таро

Плохие

что надо делать чтобы что нибудь оживить?
вот это угадай бравлера который у меня есть?
можешь рассказать больше о ксюше?
во сколько салют?
как это блин пылесосит как это называется

Ошибки матчинга

марусь номера номера, да расскажи, повтори пожалуйста,
определить кто на фото, выключи как я люблю

Отвечаем по-порядку

Итак, система определила, что фраза пользователя — это информационный запрос. Если смотреть на проблему высокоуровнево, то есть несколько способов ответить на него:

  1. Выбрать из отдельной базы готовых ответов на запросы. Такой подход оправдан по отношению к самым чувствительным темам, когда минимальные ошибки могут приводить к сильному негодованию пользователей. Эту базу заполняют наши редакторы.
  2. Найти ответ в графе знаний. Граф знаний — это хранилище, в котором хранятся знания об объектах окружающего мира и связях между ними. Объектами могут быть различные достопримечательности, важные исторические события и личности. Связями выступают различные отношения в духе «находится в», «автор произведения», «место рождения» и т. д. Если запрос пользователя не касается чувствительных тем, то система вычленяет из него объекты и их свойства и ищет их в графе знаний. Такая подсиcтема позволяет достаточно быстро и точно отвечать на простые запросы вида «Кто убил Пушкина?».
  3. Если же запрос не относится к первым двум категориям, то включается механизм поиска информации в сети и компилирования ответа. О нём подробно пойдёт речь во второй части этой статьи.
  4. Наконец, можно делегировать задачу генеративной модели и надеяться, что в ответе не будет галлюцинаций. До выхода в свет моделей типа ChatGPT ответы генеративных моделей оставляли желать лучшего из‑за маленьких неточностей, ломающих корректность ответа (хороший разбор ChatGPT здесь). Но, скорее всего, в ближайшем будущем мы можем ожидать позитивных сдвигов в этом направлении.

Важный нюанс: если пользователь спрашивает Марусю в фирменном приложении, то там она может ответить целым абзацем текста. А когда спрашивают о чём‑нибудь умную колонку, то не ожидают, что она в ответ разразится речью минуты на полторы, то есть при работе через колонку ответ должен быть короче, но с сохранением информативности. Именно о таких ответах мы и будем дальше рассказывать.

В самом начале Маруся могла отвечать только заранее заготовленными ответами или с помощью графа знаний. Это сильно ограничивало её возможности, ведь фактоиды — относительно простые вопросы, которые легко укладываются в граф знаний — составляют лишь небольшую долю от всего потока запросов к Марусе. Нам очень нужно было решение, позволяющее отвечать на остальную, львиную долю запросов людей.

Следующим шагом было использование результатов собственного поиска Mail.ru для нужд Маруси и демонстрация сниппета выдачи — текстового фрагмента с одной из найденных поисковиком страниц, идущего после заголовка. По идее, сниппет должен вам показать, что на этой странице есть то, что вы ищете.

Но это решение не помогло нам значительно увеличить количество хороших ответов из-за того, что система сниппетов изначально создавалась под сценарий веб-поиска, который значительно отличается от взаимодействия в режиме голосового помощника.

Генеративные модели

Логично, что в какой‑то момент мы обратились к модным генеративным моделям, таким как GPT и T5. Такие модели получают на вход некоторый текст (например, текст вопроса) и на его основе генерируют какой‑то ответ. Эта методика оказалась лучше сниппетов, но тоже не без недостатков.

Во‑первых, генеративные модели моложе 2023 года про окружающий мир знают только из текстов, которые они видели на этапе предварительного обучения, и, следовательно, пытаются писать похожий текст. Но мир меняется, и информация, которую «запомнила» нейросеть, устаревает. Например, где‑то выбрали другого президента, обновился мировой рекорд, Месси сменил клуб — и всё, модель отстала от жизни. То есть вам в любом случае нужно обеспечить себя достаточным количеством актуальных фактов о внешнем мире.

Читайте также:
Программа не видит карту памяти

Во‑вторых, такие нейросети не всегда генерируют идеальный текст: даже при верно понятой теме они могут «уделять внимание» не тем деталям или давать несодержательный ответ.

Примеры проблемных ответов генеративных моделей середины 2022 года:

Вопрос

Генеративный ответ (пунктуация модели)

Что делать, чтобы хороший сон приснился?

Сон — это всего лишь игра воображения, и не более того. Если вы проснётесь в хорошем сне, то вам будет сопутствовать удача во всех сферах вашей жизни.

Дай определение слова вождь племени в древности?

Вождь племени — это тот, кто является вождём племени. В древнерусском языке слово вождь означает «властелин».

Кто такой лайт ягами?

Лайт это тот, кто не умеет играть на гитаре.

С этими недостатками можно бороться, увеличивая размер нейросети, количество и актуальность обучающих данных, а также усложняя процедуру обучения. Но вам в любом случае нужны примеры хороших ответов на задаваемые вопросы.

Поэтому главным локомотивом нашего решения являются дискриминативные модели, извлекающие ответы из текстов в интернете. Именно такие модели сейчас дают большую часть ответов на вопросы в Марусе.

Дискриминативные модели

Как же мы находим ответы в интернете? После первичного препроцессинга запроса система обращается к Поиску и получает от него десять первых найденных документов в виде заголовка и тела страницы, затем делит полученные тексты на отдельные предложения и решает, является ли каждое из них ответом на вопрос. Ранжирование выдачи для ассистента и выделение ответа из текста происходит с использованием трансформеров, таких как Roberta и Alberta.

Более подробно о технической стороне вопроса мы поговорим во второй части. Здесь же вкратце ограничимся перечислением некоторых требований, удовлетворение которым представляет определённые вызовы:

  1. Ответ должен быть получен достаточно быстро. Но последовательный вызов поиска и извлечение ответа с использованием больших трансформеров может занимать значительное время.
  2. Пользователю нужно показывать с одной стороны достаточно информативный кусок текста, а с другой стороны излишне длинные и/или избыточные ответы могут вызывать дискомфорт у слушателя колонки

Оценка качества и разметка данных. Повышение качества

Каждый день мы отслеживаем качество всего, что говорит Маруся пользователям, а не только качество ответов на информационные запросы. Конечно, это слишком большой объём информации, и для анализа качества всех ответов потребовался бы огромный штат людей, что слишком дорого даже для большой корпорации. Поэтому мы проверяем лишь контрольные срезы в разных категориях, в том числе и в ответах.

Но чтобы понять, что ответ был хорошим, нужно сначала обучить асессоров тому, что такое «хороший ответ». Для этого мы написали и развиваем инструкцию для службы оценки качества. Если коротко, то самая‑самая первая инструкция сводилась к следующему: асессоры классифицировали пары вопрос+ответ на 3 класса:

  • 0 — если они не видели ответа на вопрос в предлагаемом тексте;
  • 2 — если они видели, что ответ есть;
  • 1 — если они чувствовали, что этот текст вроде бы, в тему, но как будто бы чего‑то в нём не хватает.

Промежуточный класс крайне важен, потому что при разметке он позволяет избегать ошибок, в которых не особо качественный ответ признаётся хорошим и получает метку 2. При обучении и подсчёте метрик качества такие пограничные ответы считались плохими.

Примеры разметки для вопроса «До скольки можно слушать громко музыку?»:

В любом случае громко слушать музыку не нужно.

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru