Алгоритм решения данной задачи сначала должен быть представлен в виде словесного описания или графически в виде блок-схемы. Алгоритм вычисления корней квадратного уравнения может быть представлен в виде блок-схем, изображенных на рисунках, отображающих основные элементы блок-схем и алгоритм вычисления корней квадратного уравнения:
Изображение алгоритма в виде блок-схемы позволяет наглядно представить последовательность действий, необходимых для решения поставленной задачи, убедиться самому программисту в правильности понимания поставленной задачи.
После разработки алгоритма решения задачи и представления его в виде блок-схемы можно перейти к написанию программы – последовательности инструкций на выбранном языке программирования, соответствующей разработанному алгоритму. Например, ниже приведен фрагмент программы решения квадратного уравнения, соответствующий приведенному выше алгоритму, составленному на языке Visual Basic.
procedure SqRoot(Editi,Edit2,Edit3:tEdit;Label2:tLabel);
34 Задача: Найти корни квадратного уравнения при помощи Python
var
a,b,c:real;
d:real;
xl,x2:real;
begin
a:=StrToFloat(Editl.text);
b:=StrToFloat(Edit2.text);
с:=StrToFloat(Edj.t3.text);
d:=Sqr(b)-4*a*c;
if d=0 then begin
Label2.color:=clRed;
Label2.font.color:=clRed;
Label2.caption:=’Дискриминант меньше нуля.’+#13+
‘Уравнение не имеет корней.’ end else
beginх1:=(-b+Sqrt(d))/(2*a);
x2:=(-b-Sqrt(d))/(2*а);Label2.font.color:=clBlack;
Label 2.caption=’Корни уравнения:’ +#13+’xl=1+FloatToStr(xl)
+#13+’x2=’+FloatToStr(x2);
end;
end.
Но программа, написанная на языке программирования, состоит из инструкций, понятных человеку, но не понятных процессору компьютера. Поэтому чтобы процессор смог выполнить работу в соответствии с инструкциями исходной программы, она должна быть переведена на язык команд процессора, то есть машинный язык. Задачу преобразования исходной программы в машинный код выполняет специальная программа — компилятор. Помимо преобразования исходной программы в машинную, компилятор выполняет проверку правильности записи инструкций исходной программы, т. е. осуществляет синтаксический анализ.
Компилятор создает исполняемую программу только в том случае, если в тексте исходной программы нет синтаксических ошибок. Однако генерация исполняемой программы машинного кода свидетельствует только об отсутствии в тексте программы синтаксических ошибок. Убедиться в правильности работы программы можно только во время ее тестирования – пробных запусках программы и при анализе полученных результатов. Например, если в программе нахождения корней квадратного уравнения допущена ошибка в записи выражения вычисления дискриминанта, то даже если это выражение будет синтаксически верно, программа выдаст неверные значения корней.
Решение квадратных уравнений средствами Visual Basic
Задача: Дано квадратное уравнение общего вида: ax 2 +bx+c=0. Ввести в память компьютера числовые коэффициенты: a, b, c, выполнить необходимый анализ введенной информации согласно известному из курса средней школы алгоритму решения квадратного уравнения: найти дискриминант d=b 2 -4ac и, проанализировав его знак, найти все действительные корни, если знак дискриминанта положительный, или сообщить о том, что действительных корней нет, если знак дискриминанта отрицательный.
Программа, определяющая корни квадратного уравнения. Язык программирования Python.
Начать составление проекта решения данной задачи необходимо с ответа на вопрос: что нужно поместить на форму Form1?
Поместим на форму две кнопки: CommandButton1 и CommandButton2.
Для этого нужно воспользоваться Панелью элементов (объектов) управления General, которая расположена в левой части основного окна компилятора Visual Basic.
Первая кнопка CommandButton1 предназначается для начала работы программы согласно следующему алгоритму:
- ввод коэффициентов исходного уравнения a, b, c;
- расчет дискриминанта d=b 2 — 4ac;
- анализ знака дискриминанта, вычисление корней уравнения и вывод их на форму, если знак дискриминанта d>0 (положительный);
- вывод сообщения: «Решений нет», если знак дискриминанта d 2 -5x+6=0.
Блок схема к программе которая находит корни квадратного уравнения
6.2. ОСНОВНЫЕ ТИПЫ ВЫЧИСЛИТЕЛЬНЫХ АЛГОРИТМОВ Наиболее простым видом алгоритма является линейный алгоритм, при котором действия выполняются последовательно, одно за другим, без разветвлений и возвратов.
Пример . Вычисление площади треугольника по трем сторонам a , b , c по формуле Герона: , где Блок-схема алгоритма имеет вид: В процессе решения многих задач часто возникает необходимость в зависимости от исходных данных или получающихся промежуточных результатов проводить вычисления либо по одним, либо по другим формулам, т.е. по разным направлениям – ветвям. Такой вычислительный алгоритм называется разветвляющимся. Пример. Нахождение действительных корней квадратного уравнения Блок-схема алгоритма имеет вид: При решении большинства практических задач возникает необходимость неоднократного повторения однотипных действий при различных значениях параметров, определяющих эти действия. Такие алгоритмы называются циклическими, а повторяемые участки вычислений – циклами. Пример . Вычисление факториала натурального числа
Составить блок схему алгоритма решения квадратного уравнения
Свежие записи
- Сера — химические свойства, получение, соединения.
- Нитрат кальция: способы получения и химические свойства
- Кальций: способы получения и химические свойства
- Гидроксид натрия: способы получения и химические свойства
- Гидроксид кальция: способы получения и химические свойства
Источник: all-equa.ru
Инспекция: нахождение корней квадратного уравнения на C++
Я приклеил соответствующую метку, рекомендую прочесть её описание. Возможно, вы захотите немножко дополнить/поправить вопрос.
– user181100
15 фев 2016 в 16:24
Речь идет о C++ или простом С? Потому что пока тут от плюсов только использование cin и cout
15 фев 2016 в 16:26
Newman, это C++
15 фев 2016 в 16:29
15 фев 2016 в 16:33
Если а будет 0, то просто первое слагаемое сократится и будет неполное квадратное уравнение, но ответы будут, причем правильные, если подставить.
15 фев 2016 в 16:37
4 ответа 4
Сортировка: Сброс на вариант по умолчанию
Программу можно «улучшить» так: решать не так в лоб, как когда-то в школьной тетрадке писали, а с учетом особенностей поведения компьютерной плавающей арифметики. В частности, существенно лучшим в этом отношении является следующий подход к решению
double d = b * b — 4 * a * c; // Дискриминант double q = b >= 0 ? (-b — sqrt(d)) / 2 : (-b + sqrt(d)) / 2; // Здесь узнается наше родное `-b +- sqrt(d) / 2 * a`, // но пока что без `a` в знаменателе double x1 = q / a; double x2 = c / q;
Те, кто знаком с формулами Виета, легко увидят и математическую правильность решения. А вот почему следует поступать именно так, можно почитать в классической статье (а на русском языке — у Моулера, Малькольма и того же Форсайта в книге «Машинные методы математических вычислений»)
Вкратце, идея заключается в том, что в плавающей арифметике во избежание потери точности рекомендуется избегать сложения относительно больших чисел, близких по абсолютному значению, но имеющих разные знаки — результат может получиться катастрофически неточным. В «лобовом» решении подвыражение -b — sqrt(d) может страдать от этой проблемы, если b отрицательно. Вышеприведенный подход при вычислении промежуточной величины q всегда выполняет сложение чисел с одинаковыми знаками.
Источник: ru.stackoverflow.com
Программа которая вычисляет корни квадратного уравнения
Исходник программы Паскаль, которая находит корни квадратного уравнения по заданным коэффициентам
Добрый день. Сегодня я хочу поделиться программой, написанной на языке программирования Паскаль, а именно исходник программы, которая находит корни квадратного уравнения.
Итак, задача звучит следующим образом:
«Составьте программу вычисления корней квадратного уравнения по данным значениям его коэффициентов».
Решение задачи на языке паскаль довольно простое. Вначале необходимо считать данные (значения коэффициентов) в три переменные a,b,c. Затем нужно посчитать дискриминант, после проверить больше или меньше нуля или равно ему значение дискриминанта. В зависимости от значения дискриминанта считать значение корней или вывести сообщение о том, что корней нет.
Исходный код программы нахождения корней:
Скачать исходник: koren2.pas
Программа для решения квадратных уравнений на C++
Довольно часто в пособиях по программированию встречаются задания по нахождению решений каких-нибудь математических уравнений. Задача нахождения корней квадратного уравнения — это довольно тривиальная задача, как и многие другие задачи. Решается она очень просто при помощи листа бумаги и ручки, но решение можно автоматизировать посредством написания прикладной программы и её использования. В этой статье мы напишем такую программу.
Алгоритм решения квадратного уравнения
Многие знают, что уравнение вида ax 2 + bx + c = 0 , где a не равно 0, называют квадратным уравнением.
Существуют различные способы решения квадратных уравнений, но мы рассмотрим решение через дискриминант.
Обозначается дискриминант буквой D . Из школьного курса знаем, что D = b 2 — 4ac .
Существует несколько условий:
- Если D > 0, то решение имеет 2 различных вещественных корня.
- Если D = 0, то оба вещественных корня равны.
- Если D для вводавывода в консоли, #include для работы с математическими функциями и область using namespace std;
Для вас это может быть интересно:
Программа для решения квадратных уравнений на C++ : 24 комментария
- Nicknixer Автор записи 15.10.2016
Не так сложно, как Вам кажется! Немного литературы, немного практики и смотреть на код решения такой задачи Вы будете по-другому.
Доброго времени суток! Помогите пожалуйста написать программу, которая считает сколько символов в ряде двумерного массива. То есть , например массив 5 на 5, сколько символов в 1 ряде, сколько во 2 и т.д.
Ответил вам по электронной почте
Критику принимаете?
Программа дырявая как сито.
Если число очень маленькое, но положительное, например 10^(-20) — у вас будет переполнение или типо того. Оператор > проверяет знак числа (это отдельный бит), а оператор == для дробных чисел не имеет смысла, т.к. в младших разрядах числа обычно находится какой-нибудь мусор, который при таком сравнении дает false.
x = ( -1*b + sqrt(b*b — 4*a*c) ) / (2 * a);
x = ( -1*b — sqrt(b*b — 4*a*c) ) / (2 * a);
Тут есть три вопроса:
1) зачем два раза вычислять одно и тоже (я про корень)
2) что делать если мне корни надо как-то использовать, а не просто вывести (тут есть проблема, ведь у меня то один корень — то два). Чтобы лучше понять в чем проблема — попробуйте вынести вычисление корней в отдельную функцию. У вас то вообще, если корень один — то их выведется все равно два, одинаковых.
3) в переменной «a» может быть ноль (или близкое к нулю число) — при этом мы получим деление на ноль (а точнее, переполнение).
Но это ведь еще не все. Что будет если и «a» и «b» равны нулю? — тебе надо рассмотреть два варианта — если c = 0 (условно, близко к нулю), то корней бесконечно много. А если c != 0, то корней нет.
Вообще, эта задача — прекрасный пример для юнит-тестирования и демонстрации принципов разработки через тестирование. Именно его я рассматривал в своей статье по теме тестирования: Юнит-тестирование. Пример. Boost Unit Test.
Дело в том, что тут куча вариантов сделать ошибку, при этом их понимание приходит не сразу, т.е. школьник решая задачу напишет по формуле которой учили (ну и вот как у вас). А потом надо разбираться и смотреть как программа может сломаться, при этом разрабатывать тесты.
- Николай Сергейчук Автор записи 09.02.2017
Принимаем
Согласен с вами во всём! Программу можно реализовать намного лучше, используя различные проверки и валидацию входных данных.
Однако, статья рассчитана на аудиторию, которая только начинает познавать программирование или делает лабораторную. Чтобы людям легче было понять, реализация данной программы упрощена до невозможности. И, возможно, несправедливо было с моей стороны не предупредить их о возможных ошибках в работе программы, которые могут вскрыться позже, если подать на вход определенные значения.
Кстати, у вас интересная статья по тестированию!
Николай, доброго времени суток! Можете помочь с написанием програмки в с++? 1-1/2!+1/3!-1/4!+1/5! и так до 1/100! ? Чтобы при заднии в строке номера члена последовательности выдавал сумму до него по такой вот формуле? Буду очень благодарен!
Пожалуйста подскажите как ввести экран правильный ответ дискриминанта
Помогите решить в Dev C++
Sqrt x^2+1+sqrt|x|,x0
Здравствуйте, можете помочь с решением биквадратного и триквадратного уравнения?
#include
using namespace std;
int main()
b;
cout <> c;
D = pow(b, 2) — 4 * a * c;
cout
ну и? если даже тупо скопировать код и вставить его в cpp.sh , ничего не работает. поебота какая то этот с++
Уважаемая, Лена! Я, надеюсь, вы знаете, что код программы, написанной на языке программирования C++ нельзя тупо вставить в блокнот и сохранить под названием «cpp.sh»? Если не знали, то я, видимо, открыл для вас Америку!
помогите решить. заданы 3 перемены a.b.c записать вы радение на С
b,
b и а не равно != с
iconcerts где забыл
#include
Я ради интереса написал программу нахождения корней квадратного уравнения на С++, с выводом корней как в десятичном виде, так и в виде простой дроби (причём уже сокращённой), потому что выводя корни в десятичном виде программа их одновременно сокращает и округляет и 1/3 превращается в 0.333333 хотя на самом деле 0.333333 (3), то есть для проверки правильно ли нашёл корни ваш ребёнок, вы с получите что-то типа: X1= 0.285714; X2=0.214286, а на самом деле это будет X1=2/7; X2=3/14, кроме того, если корень из дискриминанта не получается целым числом, вы уже получите двойную неточность: сначала при извлечении корня программа отсечёт значение до 4-6 цифр после запятой с округлением, а затем сделает то же самое при делении числителя на знаменатель. Я и здесь сделал вывод корней в двух значениях: в десятичном и в виде выражения X1= (-b + sqrt(D))/(2*a); X2= (-b — sqrt(D))/(2*a), то есть выводится примерно вот так X1=-5+sqrt(21)/2; X2=-5-sqrt(21)/2 с одновременным разложением дискриминанта под корнем на множители, вынесением этих множителей из-под корня, если они выносятся нацело, их перемножением и дальнейшим сокращением. Вот, например, имеем a=3, b=15, c=3, при решении получаем D=189 программа выдаёт десятичные корни X1= -0.208712 и X2= -4.79129, а в виде выражения имеем: X1= -5+sqrt(21)/2, то есть первоначально получаем: X1= -15+sqrt(189)/6, -> 189=21*9 -> -15+3sqrt(21)/6 далее идёт сокращение на 3 и итог -5+sqrt(21)/2
День добрый.
Недавно начал изучать C++. Решил попробовать написать решение квадратного уравнения именно через оператор вида «условие ? выполняется : не выполняется». Т.е. если условие выполняется, то имеем два решения (даже если d = 0, то тоже должно быть два решения x1 = x2), если d a;
std::cout <> b;
std::cout <> c;
d = pow(b, 2) — 4 * a*c;
d >= 0 ? xfst = ((-b + sqrt(d)) / double(2 * a)) , xscd = ((-b — sqrt(d)) / double(2 * a)) : std::cout
- Николай Сергейчук Автор записи 12.02.2020
if (d >= 0) = 0 ) = 0) = 0, y2 >= 0) 0, то квадратное уравнение имеет два корня; если D = 0, то 1 корень; и если D
Примеры выполнения кода:
Обратим внимание, что для данной программы коэффициент a не должен быть равен нулю. Иначе в первой ветке условного оператора будет происходить попытка деления на 0.
Если a = 0 , то квадратное уравнение превращается в линейное, которое решается иным способом. Оно всегда имеет один корень.
Источник: al-shell.ru