Эксперимент — это активный целенаправленный метод изучения явлений в точно фиксированных условиях их протекания, которые могут воссоздаваться и контролироваться самим исследователем. Эксперимент имеет перед наблюдением ряд преимуществ: в ходе эксперимента изучаемое явление может не только наблюдаться, но и воспроизводиться по желанию исследователя; в условиях эксперимента возможно обнаружение таких свойств явлений, которые нельзя наблюдать в естественных условиях; эксперимент позволяет изолировать изучаемое явление от усложняющих обстоятельств путем варьирования условий и изучать явление в «чистом виде»; в условиях эксперимента резко расширяется арсенал используемых приборов, инструментов и аппаратов.
Выделяются следующие виды эксперимента: 1) исследовательский, и поисковый эксперимент; 2) проверочный или контрольный эксперимент; 3) воспроизводящий; 4) изолирующий; 5) качественный или количественный; 6) физический, химический, социальный, биологический эксперимент.
Методология экспериментальных исследований – это общая структура (проект) эксперимента. Включает следующие этапы:
Основы экспериментального исследования
1. Разработка плана – программы эксперимента, это:
— наименование темы исследования,
— перечень необходимых материалов, приборов, установок,
— календарный план работ,
— смета на выполнение эксперимента.
Иногда дополнительно включают работы по конструированию и изготовлению приборов, аппаратов и др.
2. Оценка измерений и выбор средств измерений. Средства измерения могут быть выбраны стандартные или изготовлены специально для эксперимента. Поверка средств измерений.
3. Проведение эксперимента (этапы традиционного эксперимента, включая математическое планирование). В методике эксперимента подробно проектируют процесс проведения эксперимента:
— составляют последовательность проведения операций наблюдений и измерений;
— описывают каждую операцию с учетом выбранных средств;
— контролируют качество операций, чтобы при минимальном количестве измерений обеспечить повышенную надежность и заданную точность;
— разрабатывают форму журнала для записи результатов наблюдений и измерений;
— выбирают методы обработки и анализа экспериментальных данных, включая математические.
Наиболее важной составной частью научных исследований являются эксперименты. Это один из основных способов получить новые научные знания. Более двух третей всех трудовых ресурсов науки затрачивается на эксперименты. В основе экспериментального исследования находится эксперимент, представляющий собой научно поставленный опыт или наблюдение явления в точно учитываемых условиях, позволяющих следить за его ходом, управлять им, воссоздавать его каждый раз при повторении этих условий. От обычного, обыденного, пассивного наблюдения эксперимент отличается активным воздействием исследователя на изучаемое явление.
Основной целью эксперимента является проверка теоретических положений (подтверждение рабочей гипотезы), а также более широкое и глубокое изучение темы научного исследования.
Лекция 4 Методы экспериментальных исследований
Различают эксперименты естественные и искусственные.
Естественные эксперименты характерны при изучении социальных явлений (социальный эксперимент) в обстановке, например, производства, быта и т.п.
Искусственные эксперименты широко применяются во многих естественнонаучных исследованиях. В этом случае изучают явления, изолированные до требуемой степени, чтобы оценить их в количественном и качественном отношениях.
Иногда возникает необходимость провести поисковые экспериментальные исследования. Они необходимы в том случае, если затруднительно классифицировать все факторы, влияющие на изучаемое явление вследствие отсутствия достаточных предварительных данных. На основе предварительного эксперимента строится программа исследований в полном объеме.
Экспериментальные исследования бывают лабораторные и производственные.
Лабораторные опыты проводят с применением типовых приборов, специальных моделирующих установок, стендов, оборудования и т.д. Эти исследования позволяют наиболее полно и доброкачественно, с требуемой повторяемостью изучить влияние одних характеристик при варьировании других. Лабораторные опыты в случае достаточно полного научного обоснования эксперимента (математическое планирование) позволяют получить хорошую научную информацию с минимальными затратами. Однако, такие эксперименты не всегда полностью моделируют реальный ход изучаемого процесса, поэтому возникает потребность в проведении производственного эксперимента.
Производственные экспериментальные исследования имеют целью изучить процесс в реальных условиях с учетом воздействия различных случайных факторов производственной среды. Пассивные производственные эксперименты заключаются в сборе данных и анализе случайных отклонений от заданных параметров процесса. В активных экспериментах изменения параметров процесса заранее планируют и задают.
Методы физических измерений
Если эксперимент хорошо продуман и удачно спланирован, то он имеет больше шансов на успех. Основываясь на известных теориях и экспериментальных результатах, можно так выбрать способы и методы измерений, чтобы получить как можно больше сведений. Очень важно исключить влияние внешней среды или свести его к нулю. На практике финансовые проблемы часто ограничивают аппаратурные возможности.
Измерения– это нахождение значения физической величины опытным путем с помощью специальных технических средств. Измерения в философском аспекте – важнейший универсальный метод познания физических явлений и процессов. Измерение – вторичный метод познания, так как сначала нужно изучить объект измерений, выстроить его модель.
Измерение с этой точки зрения является методом кодирования сведений, то есть заключительной стадией процесса познания. В научном аспекте измерения – это количественная информация об объекте, без которой невозможно точно воспроизвести условия технического процесса и эффективного управления объектом. В техническом аспекте измерения дают возможность проверки научных гипотез, осуществляют связь теории и практики в науке. Цель измерений – получить численные значения нужной физической величины.
Измерения подразделяютна прямые (получают непосредственно значение измеряемой величины) и косвенные (нужную величину вычисляют из результатов непосредственных измерений).
При многократных измерениях получают разные численные значения измеряемой физической величины (даже если все значения одинаковы). Сразу возникают вопросы:
— об истинном значении физической величины,
-о точности, с которой истинное значение можно определить по нашим данным.
Х0– истинное значение, Х – то значение, которое получено в результате измерения. Е = Х – Х0– ошибка измерения.Ошибки измеренияподразделяютна:
— грубые (так называемые выбросы).
Грубые возникают вследствие ошибки экспериментатора или отказа оборудования. В отличии от других грубые ошибки обычно сразу видно. Систематические ошибки трудно обнаружить, так как отклонение в них одинаково. Они возникают из-за: несовершенства оборудования, несовершенства метода измерения, непостоянства условий опыта, влияния окружающей среды, ошибок экспериментатора, влияния неучтенных факторов. Случайные ошибки возникают вследствие многозначных причин. Такие ошибки ликвидируют обработкой данных на основе теоретической схемы теории ошибок, которая объединяет теорию вероятностей и математическую статистику
В настоящее время следует говорить об измерительных технологиях, так как сложность измерений возрастает. Основа любой формы управления, анализа, прогнозирования, планирования, контроля или регулирования – достоверная исходная информация, основанная на измерениях. Отсюда значительные затраты на измерения. Примерно 15% общественного труда затрачивается на проведение измерений, от 3 до 6% валового национального продукта тратится на измерения, прямо или косвенно.
Средства измерений и их классификация
Средство измерений– это техническое средство:
— используемое при измерениях,
— имеющее нормированные метрологические свойства,
— воспроизводящее или хранящее единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени.
Средство измерений либо воспроизводит величину заданного размера (например, гиря – массу, магазин сопротивлений – ряд дискретных значений сопротивлений), либо вырабатывает сигнал, несущий информацию о значении измеряемой величины. Сигнал либо сразу воспринимается человеком (отклонение стрелки прибора), либо преобразуется еще раз, чтобы быть воспринятым (сравнение в приборе двух сигналов и выдача разницы — фотоколориметр).
Средство измерений может работать в двух режимах: статическом, при котором изменением измеряемой величины за время измерения можно пренебречь, и динамическом, при котором изменение нужно учитывать, так как это изменение превышает допустимую погрешность.
Средства измерений классифицируют:
1. По роли, выполняемой в системе обеспечения единства измерений, средства измерений подразделяют на метрологические, для хранения или воспроизведения единицы измерений, и рабочие, применяемые для непосредственных измерений в эксперименте.
2. По уровню автоматизации: — неавтоматические, — автоматизированные, в этом режиме возможно одно измерение или его часть, — автоматические, в этом режиме проводят все измерение и обработку его результатов, регистрацию, передачу данных или выработку управляющих сигналов.
3. По уровню стандартизации: стандартизованные, то есть отвечающие требованиям государственного или отраслевого стандарта (их чаще используют, по ним проводят государственные испытания),нестандартизованные(уникальные) для решения специальной задачи, которую не нужно стандартизировать.
4. По отношению к измеряемой физической величине:
– основные (измеряют основную физическую величину),
— вспомогательные, измеряют физическую величину, влияние которой на основное средство измерений нужно учесть, чтобы получить требуемую точность.
5. По роли в процессе измерения и выполняемым функциям. Это основная классификация. Средства измерений подразделяют на
элементарные: меры (однозначные – гиря, многозначные – линейка, наборы мер — ареометры, магазины мер – магазин сопротивлений и т.д.), устройства сравнения, измерительные преобразователи (датчик),
комплексные: измерительные приборы, измерительные установки, измерительные системы и комплексы.
Метрологические характеристики средств измерений
Это характеристики свойств средств измерений, оказывающие влияние на результат измерения и его погрешности. Характеристики, устанавливаемые нормативно-техническими документами называют нормируемыми, а определяемые экспериментально – действительными. Метрологические характеристики позволяют: — определять результаты измерений и рассчитывать оценки характеристик инструментальной составляющей погрешности измерения в реальных условиях применения средств измерений, — рассчитывать метрологические характеристики каналов измерительных систем, состоящих из нескольких средств измерений с известными метрологическими характеристиками, — проводить оптимальный выбор средств измерений для данных условий с нужным качеством измерений, — сравнивать средства измерений разных типов.
Классы точности средств измерений это обобщенная характеристика средств измерений, выражаемая пределами допускаемых значений его основной и дополнительной погрешностей, а также другими характеристиками, влияющими на точность. Класс точности не является непосредственной оценкой точности измерений, так как она зависит еще от метода измерений, условий измерений и т.д. Класс точности – лишь пределы погрешности, это интервал, в котором находится значение основной погрешности средства измерений. Средство измерений может иметь два или более класса точности, например, если у него два или более диапазонов измеряемой величины, а также, если прибор измеряет несколько физических величин.
Анализ экспериментальных данных
Возможны три случая проведения эксперимента.
Первый – теоретически получена аналитическая зависимость, которая однозначно определяет исследуемый процесс. Например, y= 6e 5 x . В этом случае объем эксперимента для подтверждения данной зависимости минимален, поскольку функции однозначно определяется экспериментальными данными.
Второй случай – теоретическим путем установлен лишь характер зависимости. Например, y=ae — kx . В этом случае задано семейство кривых. Экспериментальным путем необходимо определитьaиk. При этом объем эксперимента возрастает.
Третий случай – теоретически не удалось получить каких-либо зависимостей. Разработаны лишь предположения о качественных закономерностях процесса. Во многих случаях целесообразен поисковый эксперимент. Объем экспериментальных работ резко возрастает. Здесь уместен метод математического планирования эксперимента.
Источник: studfile.net
Методология экспериментальных исследований
Экспериментальные исследования – это один из основных способов получения научных данных. В их основе лежит эксперимент, который представляет собой научно поставленный опыт в условиях, позволяющих следить за его ходом, управлять им и воссоздать при необходимости. От пассивного наблюдения эксперимент отличается активным воздействием исследователя на изучаемое явление. Цель эксперимента – проверка теоретических предположений, а также более широкое и глубокое изучение предмета исследования.
Различают эксперименты в естественных и искусственных условиях. Естественный эксперимент проводят в открытых системах при сложном влиянии внешних факторов (социальный, производственный и т.д.). Искусственный эксперимент широко применяется в технических науках, с его помощью изучают изолированное явление в специальных условиях с целью его оценки в количественном или качественном отношении.
Экспериментальные исследования делятся на лабораторные и производственные. Лабораторные опыты проводят с применением типовых приборов, специальных моделирующих установок, стендов.
Они позволяют получить научную информацию с минимальными затратами, но не всегда полностью моделируют реальное явление или процесс.Поэтому часто возникает потребность в производственных экспериментальных исследованиях. Они имеют целью изучить процесс в реальных условиях с учетом воздействия различных случайных факторов.
Такие эксперименты проводят в шахтах, на строящихся объектах. К производственным исследованиям относят также специальные полевые экспедиции по обследованию эксплуатируемых объектов. Одной из разновидностей производственного эксперимента является собирание материалов в организациях, которые накапливают их по стандартным формам. Такие данные подвергаются обработке методами математической статистики (анкетирование). Производственный эксперимент может проводиться в виде опытов на специальных полигонах.
Зачастую на эксперимент затрачивается много средств и времени, проводится большое количество наблюдений и измерений, получают множество графиков, на обработку и анализ затрачивается много труда. Иногда оказывается, что сделано много лишнего, а иногда, что экспериментатор не четко организовал эксперимент, не правильно выбрал цель, а на её основе сформулировал задачи исследований. Поэтому прежде чем приступить к экспериментальным исследованиям, необходимо четко продумать методологию эксперимента.
Методология эксперимента – это общие принципы, структура эксперимента, его постановка и последовательность выполнения. Методология эксперимента включает в себя следующие основные этапы:
– разработку плана-программы эксперимента;
– выбор средств для проведения эксперимента;
– обработку и анализ экспериментальных данных.
Для того чтобы правильно организовать эксперимент, применяют математическую теорию планирования эксперимента, позволяющую повысить точность и уменьшить объем экспериментальных исследований.
В общем случае план-программа эксперимента включает: наименование темы исследований; рабочую гипотезу; методику эксперимента; перечень необходимых материалов, приборов, установок; календарный план работ; смету расходов на выполнение эксперимента.
Основу плана-программы составляет методика эксперимента. Методика – это система приемов и способов для последовательного наиболее эффективного экспериментального исследования. Методика включает в себя: цель и задачи эксперимента, выбор варьируемых факторов; обоснование средств и потребного количества измерений; описание проведения эксперимента; обоснование способов обработки и анализа результатов эксперимента.
Определение цели и задач исследования – это один из основных этапов эксперимента. Обосновывают цель на основе анализа информации, рабочей гипотезы или результатов теоретических исследований. Имеющаяся до начала эксперимента научная информация позволяет судить об ожидаемых закономерностях, а, следовательно, она позволяет сформулировать задачи эксперимента (3-4 задачи).
Выбор варьируемых факторов заключается в установлении основных и второстепенных факторов, влияющих на исследуемый процесс и составления из них убывающего по важности ряда (ранжирование). Основным принципом установления степени важности характеристики является её роль в исследуемом процессе. Для этого изучают процесс в зависимости от какой-то одной переменной при остальных постоянных. Это возможно при небольшом количестве факторов, если же переменных величин много, целесообразно использовать многофакторный анализ и математическое планирование эксперимента.
Выбор необходимых для наблюдений и измерений приборов, оборудования, машин и др. производится на базе выпускаемых каталогов и с помощью специальной науки – метрологии. В первую очередь используют стандартные приборы и машины, работа на которых регламентируется стандартами. В отдельных случаях возникает потребность в создании уникальных приборов, установок и стендов. При этом разработка и конструирование приборов и других средств должна быть тщательно обоснована теоретическими расчетами и практическими соображениями.
При экспериментальном исследовании процесса или явления повторные отчеты, как правило, не одинаковы. Отклонения объясняются различными причинами: неоднородностью свойств объекта исследований, несовременностью приборов и классом их точности, особенностями эксперимента и др.
Чем больше случайных факторов, влияющих на опыт, тем больше отклонения отдельных измерений от среднего значения. Это требует повторных измерений, следовательно, необходимо знать их потребное минимальное количество. Под минимальным количеством измерений понимают такое их число, которое в данном опыте обеспечивает устойчивое среднее значение измеряемой величины, удовлетворяющее заданной степени точности. Установление потребного минимального количества измерений имеет большое значение, поскольку обеспечивает получение объективных результатов при минимальных затратах времени и средств.
Иногда для исключения систематической ошибки, возникающей при субъектном назначении последовательности испытаний, очередность опытов устанавливают с использованием метода рандомизации, суть которого заключается в случайной последовательности опытов, назначаемой с помощью таблицы случайных чисел.
В методике подробно описывают процесс проведения эксперимента. Вначале разрабатывают очередность выполнения операций наблюдения и измерений, а затем описывают каждую операцию в отдельности с учетом выбранных средств измерений. При этом уделяют внимание контролю качества операций, обеспечивая высокую надежность и заданную точность при минимальном количестве измерений.
При проведении экспериментальных работ особое значение имеет добросовестность, терпение, настойчивость, выдержка. Обязательным требованием при проведении эксперимента является ведение журнала наблюдений. Форма журнала может быть произвольной, однако вести его нужно аккуратно, без каких-либо исправлений. При получении резко отличающихся измерений, исполнитель должен указать обстоятельства, сопутствующие указанному измерению, а не исключать его, стремясь получить нужный результат. Экспериментатор должен непрерывно следить за средствами измерений и проводить их рабочую поверку.
Одновременно с производством измерений исполнитель должен проводить предварительную обработку результатов и их анализ, что позволяет контролировать исследуемый процесс, корректировать эксперимент, улучшать методику и повышать эффективность эксперимента.
Особо тщательно необходимо соблюдать указанные требования при проведении производственных экспериментов. Вследствие больших объемов работ и значительной их трудоемкости ошибки, допущенные в процессе эксперимента, могут существенно увеличить продолжительность исследований и уменьшить их точность.
Важным разделом методики является выбор методов обработки и анализа результатов эксперимента. Результаты экспериментов систематизируется и анализируется, затем их представляют в виде таблиц, графиков, номограмм, формул, что позволяет быстро сопоставлять полученные данные.
Особое место занимают математические методы обработки и анализа опытных данных; установление эмпирических зависимостей; аппроксимация связей между факторами; нахождение критериев и доверительных интервалов и др.
Объем и трудоемкость экспериментальных исследований во многом зависят также от глубины теоретических разработок. Например, если теоретически получена аналитическая зависимость у =3 е –2 х , однозначно определяющая процесс, то объем эксперимента минимален и направлен на подтверждение зависимости.
Если установлен общий вид зависимости у = а 1 , то в этом случае задано семейство кривых и в задачу эксперимента входит определение параметров а1 и а2. Объем эксперимента возрастает. И, наконец, при поисковом эксперименте, если теоретических зависимостей не получено, объем экспериментальных работ наиболее значителен, и в этом случае уместно использовать метод математического планирования эксперимента. На объем и трудоемкость эксперимента также влияет его вид. Как правило, полевые эксперименты имеют большую трудоемкость, чем лабораторные.
Источник: poisk-ru.ru
X Международная студенческая научная конференция Студенческий научный форум — 2018

Экспериментальный метод научного исследования – детище Нового времени. Его становление явилось революционной вехой в развитии человеческого познания, и прежде всего, естествознания. Многие историки науки вполне справедливо считают, что именно систематическое применение экспериментального метода знаменовало собой возникновение опытной науки в современном смысле этого слова, пришедшей на смену античному умозрению и средневековой схоластике.
Основателем и пропагандистом эксперимента как самостоятельного метода научного исследования явился Г.Галилей. Опираясь на метод физического эксперимента, он опроверг начала аристотелевской физики и заложил основы классической механики, которая позже получила свое полное развитие в трудах И. Ньютона. Возникнув в недрах физики, экспериментальный метод постепенно расширял сферу своего применения, найдя широкое распространение в химии, биологии, физиологии и других естественных и технических науках. В наше время он все больше проникает и в обществознание (экономика, социология, психология и др.). В методологическом арсенале современной науки эксперименту отводится важнейшая роль как основному общенаучному методу эмпирического исследования.
2. Практический базис эксперимента
Слово «эксперимент» произошло от греческого слова «experimentym», которое переводится как «проба», «опыт». Экспериментом называют научно поставленный опыт или наблюдение исследуемого явления в учитываемых условиях, которые позволяют следить за ходом явления и воспроизводить его многократно при повторении этих условий. В широком смысле эксперимент — это любой опыт, попытка осуществить что-либо, особый вид практики, предпринимаемой для получения нового знания или проверки старого.
В эксперименте выделяется субъект, объект познавательного действия, само действие и практические средства познания, то есть приборы и инструменты.
Методология эксперимента разрабатывается для эффективного проведения экспериментальных исследований. Она включает разработку программы эксперимента, оценку измерений, выбор средств проведения опыта, непосредственное его проведение, обработку и анализ полученных экспериментальных данных. Использование приборов — отличительная особенность. Эксперименты могут быть естественными и искусственными.
Естественные эксперименты базируются исключительно на наблюдении. Он соединяет в себе положительные черты объективного наблюдения (естественность) и лабораторного (целенаправленное воздействие на человека). Он производится в условиях, близких к обычной деятельности испытуемого, который не знает, что он является объектом исследования. Проявляется в естественных условиях трудовой, игровой или учебной деятельности.
Искусственный же эксперимент требует для своего проведения специально создаваемой обстановки. Чаще используется в науках о неживой природе. Его называют также лабораторным экспериментом. Искусственный эксперимент имеет такие достоинства, как возможность обеспечить достаточные условия для устранения побочных факторов, т.е. для достижения высокой внутренней валидности, причем с эффективным использованием времени и ресурсов. Однако часто перед ним встает проблема внешней валидности, или экстраполируемости полученных результатов.
В эксперименте раскрывается причинно-следственная связь, т.е. зависимость изучаемого явления от известных контролируемых условий.
Эксперимент предполагает активное вмешательство ученого в процесс исследования, управление этим процессом т.к. условия меняет сам ученый. Использование, как минимум, двух методик измерения.
Одна из которых измеряет условия протекания процесса, а другая методика фиксирует изменения, происходящие в изучаемых объектах.Необходимо наличие гипотезы, т.е. предположение о характере изучаемой связи, которую должен подтвердить или опровергнуть эксперимент.По форме эксперимент сближается с деятельностью, в которой принимают участие субъект и объект, средства их взаимного воздействия и сама деятельность, в результате которой реализуется субъективная цель, видоизменяется объект, принимающий удобную форму для обеспечения потребностей человека. В эксперименте выделяются также субъект и объект познавательного действия, практические средства познания (приборы и инструменты), и само действие, направленное на изменение объекта.
Итак, эксперимент с самого начала выделяется в особый вид практики, предпринимаемой с целью получения нового знания и проверки старого.
В контексте выше сказанного следует отметить, что особенность эксперимента проявляется не просто в наличии практического действия, а в создании особой приборной ситуации, экспериментальной установки. Она состоит из элементов естественной и искусственной природы, а ее целостное функционирование и выступает в качестве объекта исследования. Создав такую установку, исследователь изучает ее функционирование, влияет на нее путем перегруппировки элементов, их элиминирования, заменой новыми и так далее, то есть активно изменяет объект изучения, его структуру. Наблюдая за возникающими следствиями, ученый выявляет скрытые от непосредственного наблюдения, но объективные свойства предметов и явлений.
При этом, в процессе эмпирического исследования на изучаемый объект действительно влияет прибор, а иногда полностью его моделирует, но это не искажает реальных свойств изучаемых явлений, наоборот, служит единственным средством практического их выявления. Дело в том, что прибор(экспериментальная установка), хотя и сделан руками человека, представляет собой часть реального мира, функционирует в полном соответствие с законами природы.
Конструируя сложные технические системы в качестве средств познания, человек не удаляется от мира, а приближается к нему. Как известно в природе предметы и явления существуют не изолированно друг от друга, а находятся во взаимодействии, образуя тем самым целостную систему материального мира. Каждый уровень структурной организации материи связан с другим уровнем. Микропроцессы так или иначе дают о себе знать через макроявления, в противном случае они никогда бы не были открыты и познаны.Приводя микрообъекты во взаимодействие с приборами (то есть макрообъектами), мы поступаем в полном соответствии с законами природы.Приборы становятся единственным и наиболее надежным средством практического познания.
Таким образом, прибор – важнейшее средство познания, а его использование – отличительная особенность эмпирического, в том числе и экспериментального, исследования. Специфика прибора в той или иной мере обусловливает и специфику разновидностей эмпирического познания. Поэтому большое значение имеет классификация приборов. Их можно подразделить на пять основных групп:
1) приборы, увеличивающие силу и диапазон чувственного восприятия
(микроскопы, телескопы, приборы ночного видения, рентгеновские установки);
2) измерительные приборы (линейки, часы, барометры, термометры, счетчики Гейгера);
3) технические устройства, позволяющие расчленить предметы, проникнуть в их внутреннюю структуру (ускорители, центрифуги, перегонные кубы, фильтры, призмы);
4) технические системы, обеспечивающие необходимые для эксперимента условия (барокамеры, аэродинамические трубы, вибросистемы);
5) фиксирующие приборы (кино-, фото-, телеаппаратура, электроскопы, осциллографы, различные индикаторы, флюоресцирующие экраны и т.д.).В современном научном познании, как правило, применяются не отдельные приборы, а их комплекс.
Эксперимент как деятельность, имеющая внешние и внутренние, объективные и субъективные признаки, распадается на ряд этапов, сочетание которых раскрывает его логическую структуру. До некоторого (недавнего) момента времени его специфика ограничивалась лишь сбором опытных данных, то есть непосредственным экспериментированием, из которого выпадали подготовительная и заключительная стадии. Считалось, например, что логическая обработка данных выходит за рамки чисто экспериментального исследования и относится к разряду теоретического познания.
В настоящее время, стало ясно, что простые логико-математические операции входят в структуру эмпирического исследования, частью которого является эксперимент. И, без некоторой, хотя бы минимальной обработки данных опыта, то есть без особой теоретической части, эмпирическое исследование не существует.
Исходя из этого, можно утверждать, что эксперимент вовсе не ограничивается лишь проведением опыта и получением исходной информации, а складывается из этапов, на каждом из которых по-своему сочетаются элементы чувственного, практического и теоретического познания. К ним можно отнести следующие: 1) подготовительный, 2) этап проведения эксперимента и получение опытных данных; 3)этап обработки опытных данных, или заключительный. Анализ структурных особенностей экспериментального исследования помогает раскрыть его природу с гносеологической точки зрения, то есть с позиции соотношения объекта и субъекта познавательной деятельности. В следующем разделе более подробно рассматривается строение эксперимента, которое имеет не менее важное значение для достижения этой цели.
3.Экспериментальные методы
Экспериментальные методы – это схемы последовательностей операций исследователя, определяемые строением научного эксперимента.
Строение эксперимента можно изучать на различных уровнях. В зависимости от этого фиксируемые нами методы будут характеризоваться той ил иной степенью детализации. Поскольку мы рассмотрели общее строение эксперимента, это поможет нам установить схему последовательностей операций исследователя, характерную для любого эксперимента. Это – наиболее общая и универсальная схема. Последующая детализация экспериментальных методов приведет лишь к выделению экспериментальных процедур, характерных для определенных областей исследования.
В познавательном цикле наряду с экспериментом в каждом элементарном акте осуществляются процессы счета и измерения. В связи с этим возникают специфические методы счета и измерения. Хотя счет и измерения являются необходимыми процессами в развитии науки, мы вынуждены абстрагироваться от них. Процедуры счета и измерения дополняют процедуры эксперимента.
Тот факт, что на основе установленных количественных характеристик в науке часто удается сделать выводы относительно строения объекта познания и законов его функционирования, не меняет дела. Действительно читаются и измеряются лишь конкретные элементы строения объекта познания.Следовательно, в процессе счета и измерения всегда присутствует считаемый и измеряемый объект. Кроме этого, методологические модели изучаемого объекта, созданные на основе счета и измерений, должны быть подтверждены или опровергнуты экспериментом.
Особое место в экспериментальных исследованиях занимают математическая обработка результатов счета и измерений, а также построение математических моделей предмета познания, которые играют важную роль в научных исследованиях. Однако, чтобы говорить об этих методах корректно, необходимо подвергнуть специальному анализу процесс познания в математике.В этих условиях математические методы можно описывать в терминах математики, что для целей методологического анализ совершенно недостаточно.
Литература
Рузавин Г.И. Методология научного исследования. Учебное пособие. М.:ЮНИТИ,1999.
Подкорытов Г.А. О природе научного метода. – Л. Изд-во ЛГУ, 1988
В.Г.Блохин, О.П.Глудкин, А.И.Гуров, и др. Современный эксперимент: подготовка, проведение, анализ результатов. Учебник. — М.: Радио и связь,
Источник: scienceforum.ru