Программа для решения 2 задачи егэ информатика

Логическая функция F задаётся выражением ¬x ⋁ y ⋁ (z ⋀ ¬w). Во фрагменте таблицы истинности функции F приведены все строки, при которых значение функции F ложно.

Логическая функция F задаётся выражением (¬x⋀y)⋁(z⋀¬y)⋁ w. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.

Логическая функция F задаётся выражением (x⋁y)⋀(¬y ≡ z)⋀ w. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.

Логическая функция F задаётся выражением ((¬z⋁¬x)⋀z)⋁w⋁¬y. Ниже приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Опред…

Логическая функция F задаётся выражением ((x ⋀ z) ⋁ ¬x) ⋀ ¬w ⋀ y. Ниже приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истин…

Логическая функция F задаётся выражением (y ⋀ (w → x)) → g. Во фрагменте таблицы истинности функции F приведены все строки, при которых значение функции F ложно. Определите, какому…

Задание 2 | ЕГЭ по информатике | ДЕМО-2022

Логическая функция F задаётся выражением ¬(x → z) ⋀ (¬y ⋁ w). Во фрагменте таблицы истинности функции F приведены все строки, при которых значение функции F истинно. Определите, ка…

Логическая функция F задаётся выражением y ⋀ (x → z) ⋀ ¬w. Во фрагменте таблицы истинности функции F приведены все строки, при которых значение функции F истинно. Определите, каком…

Логическая функция F задаётся выражением (x = y) ⋁ ¬(x → w)⋁ z. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.

Логическая функция F задаётся выражением ((y → x)⋀(¬x → z))⋁ ¬w. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.

Логическая функция F задаётся выражением (x = y) ⋁ ¬(y → w) ⋁ z. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.

Логическая функция F задаётся выражением (x → y)⋀(¬y⋁w)⋀z. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.

Укажите значения логических переменных X, Y, Z, T , при которых логическое выражение (X → Y ) ∨ ((X ∧ ¬Z) → T ) ложно.

Ответ запишите в виде строки из четырёх значений переменных X…

Дан фрагмент таблицы истинности выражения F:

x1 x2 x3 x4 x5 x6 x7 x8 F
1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1
1 1 1
1

Решение 8 задачи ЕГЭ по информатике, меньше минуты

Логическая функция F задаётся выражением (x → ¬y) ≡ (z ∨ y). Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

Переменная 1
. …

Логическая функция F задаётся выражением ¬x∧(y → z).Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

Переменная 1
.
Переменн…

Логическая функция F задаётся выражением (x ∧ ¬y) ∨ (¬y ∧ ¬z). Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

Переменная 1
?…

Второе задание экзамена по информационным технологиям проверяет, как выпускники умеют строить таблицы истинности различных логических выражений. Количество переменных в примерах для решения может быть более трех. В части задач схемы уже частично построены, и вопросы касаются пустых ячеек. Как правило, ответ в таких случаях нужно выбрать из предложенных версий. Для этого типа задач правильный вариант всегда только один.

Если таблица истинности не имеет пустых клеток, вопрос может быть сформулирован следующим образом: «Что за высказывание может соответствовать F?» или «Выберите из предложенных версий ту, которая больше всего подходит под ячейку F».

Задача под номером два по праву считается одной из труднейших в экзамене по информатике. Эксперты советуют не сидеть над ней дольше пяти минут, а переходить к следующим заданиям. Второй вопрос часто оставляют на потом, возвращаясь к нему после решения более простых задачек.

Источник: examer.ru

Задача №2. Построение таблиц истинности логических выражений. Выбор выражения, соответствующего условию.

В компьютере вся информация представлена в двоичной системе счисления, в которой используется две цифры – 0 и 1. Собственно, и цифр как таковых у компьютера нет, а есть электрический сигнал, проходящий по электронным схемам и соединительным проводникам (шинам) компьютера, который может принимать значения “высокий уровень электрического напряжения” (принимаемый нами за 1) и “низкий уровень электрического напряжения” (принимаемый за 0). Для различных действий над этими нулями и единичками нам необходимы специальные операции, которые работают с двоичными переменными. Такие операции называются логическими операциями.

Логические операции и их аргументы принимают только два значения: 1 (“истина”) и 0 (“ложь”).

Таблица истинности выражения определяет его значения при всех возможных комбинациях исходных данных.

Количество строк в таблице истинности выражения от N переменных равно 2 N .

Основные логические операции:

1). Логическое умножение (конъюнкция, логическое И). Обозначается: AND, В

2). Логическое сложение (дизъюнкция, логическое ИЛИ). Обозначается: OR, |, /.

A

B

A / B

3). Логическое отрицание (инверсия, логическое НЕ). Обозначается: NOT, ¬, .

A

¬ А

4). Логическое следование (импликация). Обозначается: →.

A

B

A → B

5). Логическое равенство (эквивалентность). Обозначается: ↔, ~.

A

B

A ~ B

Порядок (приоритет) выполнения логических операций:

Если в выражении нет скобок, то операции выполняются в следующем порядке:

— Логическое отрицание (инверсия, логическое НЕ);

— Логическое умножение (конъюнкция, логическое И);

— Логическое сложение (дизъюнкция, логическое ИЛИ);

— Логическое следование (импликация);

— Логическое равенство (эквивалентность).

Выбор выражения по таблице истинности

Дан фраг­мент таб­ли­цы ис­тин­но­сти вы­ра­же­ния F:

x1

x2

x3

x4

x5

x6

F

Каким вы­ра­же­ни­ем может быть F?

1) (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6)

2) (x1 ∧ x3) ∨ (x3 ∧ x5) ∨ (x5 ∧ x1)

3) (x2 ∧ x4) ∨ (x4 ∧ x6) ∨ (x6 ∧ x2)

4) (x1 ∧ x4) ∨ (x2 ∧ x5) ∨ (x3 ∧ x6)

Все пред­став­лен­ные ва­ри­ан­ты от­ве­та — дизъ­юнк­ции трёх конъ­юнк­ций. Все зна­че­ния F в таблице равны нулю. Дизъ­юнк­ция равна нулю, когда все слагаемые равны нулю.

Рас­смот­ри по­очерёдно все че­ты­ре вы­ра­же­ния.

1) В пер­вой стро­ке таб­ли­цы x1=1 и x2=1, зна­чит x1∧x2=1. Выражение не подходит.

2) Во вто­рой стро­ке таб­ли­цы x1=1 и x3=1, зна­чит x1∧x3=1. Выражение не подходит.

3) Подставим в третье выражение поочередно значения всех строк таблицы:

(x2 ∧ x4) ∨ (x4 ∧ x6) ∨ (x6 ∧ x2) = (1 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 1) = 0 ∨ 0 ∨ 0 = 0

(x2 ∧ x4) ∨ (x4 ∧ x6) ∨ (x6 ∧ x2) = (0 ∧ 0) ∨ (0 ∧ 1) ∨ (1 ∧ 0) = 0 ∨ 0 ∨ 0 = 0

(x2 ∧ x4) ∨ (x4 ∧ x6) ∨ (x6 ∧ x2) = (0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 0) = 0 ∨ 0 ∨ 0 = 0

4) В тре­тьей стро­ке таб­ли­цы x1=1 и x4=1, зна­чит x1∧x4=1. Выражение не подходит.

Для таб­ли­цы ис­тин­но­сти функ­ции F из­вест­ны зна­че­ния толь­ко не­ко­то­рых ячеек:

x1

x2

x3

x4

x5

x6

x7

F

Каким вы­ра­же­ни­ем может быть F?

1) x1 ∧ x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7

2) x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7

3) ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ x6 ∧ x7

4) x1 ∨ x2 ∨ ¬ x3 ∨ x4 ∨ x5 ∨ ¬x6 ∨ x7

Рас­смот­ри по­очерёдно все че­ты­ре вы­ра­же­ния.

1) Выражение является конъюнкцией переменных и их отрицаний. Конъюнкция равна единице, когда все операнды равны единице. В первой строке x6 = 0, а значит и все выражение F равно нулю, что не со­от­вет­ству­ет таб­ли­це ис­тин­но­сти.

2) Выражение является дизъюнкцией переменных и их отрицаний. Дизъюнкция равна единице, когда хотя бы один операнд равен единице. Подставим во второе выражение поочередно значения всех строк таблицы:

x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7 = x1 ∨ ¬x2 ∨ x3 ∨ 0 ∨ ¬x5 ∨ 0 ∨ ¬x7 может принимать значение 1, если хотя бы один из операндов равен 1.

x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7 = x1 ∨ ¬x2 ∨ x3 ∨ 1 ∨ ¬x5 ∨ x6 ∨ 1 = 1

x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7 = 0 ∨ ¬x2 ∨ x3 ∨ 0 ∨ ¬x5 ∨ x6 ∨ ¬x7 может принимать значение 0, если все остальные операнды равны 0.

3) Выражение является конъюнкцией переменных и их отрицаний. Конъюнкция равна единице, когда все операнды равны единице. Во второй строке x4 = 0, а значит и все выражение F равно нулю, что не со­от­вет­ству­ет таб­ли­це ис­тин­но­сти.

4) Выражение является дизъюнкцией переменных и их отрицаний. Дизъюнкция равна единице, когда хотя бы один операнд равен единице. В третьей строке x4 = 1, значит и все выражение F равно 1, что не со­от­вет­ству­ет таб­ли­це ис­тин­но­сти.

Логическая функция F задаётся выражением (¬z) ∧ x ∨ x ∧ y. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

Перем. 1

Перем. 2

Перем. 3

Функция

Источник: ege-study.ru

Подготовка к ЕГЭ по информатике. Задание 2. Построение таблиц истинности для логических выражений

Шаблон для презентации

В презентации собраны задачи для подготовки к решению второго задания ЕГЭ по информатике. 10 задач на умение строить и решать задачи по таблицам истинности для логических выражений.

Также есть файл с текстовым вариантов заданий для использования на консультациях.

Целевая аудитория: для 11 класса

Уважаемые коллеги! Автор ждёт Ваши отзывы! Оставьте своё мнение о разработке!
Всего комментариев: 0

Физкультминутки

Физкультминутки

Физкультминутки обеспечивают кратковременный отдых детей на уроке, а также способствуют переключению внимания с одного вида деятельности на другой.

Новые методические разработки
Популярные статьи
Последние новости образования

Свидетельство о публикации презентации

В помощь учителю

Уважаемые коллеги! Добавьте свою презентацию на Учительский портал и получите бесплатное свидетельство о публикации методического материала в международном СМИ.

Для добавления презентации на портал необходимо зарегистрироваться.

Конкурсы для учителей

Диплом и справка о публикации каждому участнику!

Популярное

Выпускной в школе

Летний лагерь

Летний пришкольный лагерь

Новости образования

Маркер СМИ

Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.

Фотографии предоставлены

Источник: www.uchportal.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru