Примеры с программой действий

Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.

В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.

Порядок вычисления простых выражений

В случае выражений без скобок порядок действий определяется однозначно:

  1. Все действия выполняются слева направо.
  2. В первую очередь мы выполняем деление и умножение, во вторую – вычитание и сложение.

Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Математика 3 класс (Урок№10 — Порядок выполнения действий в числовых выражениях.)

Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.

Условие: вычислите, сколько будет 7 − 3 + 6 .

Решение

В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:

7 − 3 + 6 = 4 + 6 = 10

Ответ: 7 − 3 + 6 = 10 .

Условие: в каком порядке нужно выполнять вычисления в выражении 6 : 2 · 8 : 3 ?

Решение

Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

Условие: подсчитайте, сколько будет 17 − 5 · 6 : 3 − 2 + 4 : 2 .

Решение

Сначала определим верный порядок действий, поскольку у нас здесь есть все основные виды арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо разделить и умножить. Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке справа налево. То есть 5 надо умножить на 6 и получить 30 , потом 30 разделить на 3 и получить 10 . После этого делим 4 на 2 , это 2 . Подставим найденные значения в исходное выражение:

Простой пример, в котором главное не запутаться. Порядок действий в выражениях

17 − 5 · 6 : 3 − 2 + 4 : 2 = 17 − 10 − 2 + 2

Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

Ответ: 17 − 5 · 6 : 3 − 2 + 4 : 2 = 7 .

Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

Что такое действия первой и второй ступени

Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.

Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

Порядок вычислений в выражениях со скобками

Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

Читайте также:
Как работать в программе арткам для чпу

Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

Условие: вычислите, сколько будет 5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 .

Решение

В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7 − 2 · 3 . Здесь нам надо умножить 2 на 3 и вычесть результат из 7 :

7 − 2 · 3 = 7 − 6 = 1

Считаем результат во вторых скобках. Там у нас всего одно действие: 6 − 4 = 2 .

Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 5 + 1 · 2 : 2

Начнем с умножения и деления, потом выполним вычитание и получим:

5 + 1 · 2 : 2 = 5 + 2 : 2 = 5 + 1 = 6

На этом вычисления можно закончить.

Ответ: 5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 6 .

Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.

Условие: вычислите, сколько будет 4 + ( 3 + 1 + 4 · ( 2 + 3 ) ) .

Решение

У нас есть скобки в скобках. Начинаем с 3 + 1 + 4 · ( 2 + 3 ) , а именно с 2 + 3 . Это будет 5 . Значение надо будет подставить в выражение и подсчитать, что 3 + 1 + 4 · 5 . Мы помним, что сначала надо умножить, а потом сложить: 3 + 1 + 4 · 5 = 3 + 1 + 20 = 24 . Подставив найденные значения в исходное выражение, вычислим ответ: 4 + 24 = 28 .

Ответ: 4 + ( 3 + 1 + 4 · ( 2 + 3 ) ) = 28 .

Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

Допустим, нам надо найти, сколько будет ( 4 + ( 4 + ( 4 − 6 : 2 ) ) − 1 ) − 1 . Начинаем с выражения во внутренних скобках. Поскольку 4 − 6 : 2 = 4 − 3 = 1 , исходное выражение можно записать как ( 4 + ( 4 + 1 ) − 1 ) − 1 . Снова обращаемся к внутренним скобкам: 4 + 1 = 5 . Мы пришли к выражению ( 4 + 5 − 1 ) − 1 . Считаем 4 + 5 − 1 = 8 и в итоге получаем разность 8 — 1 , результатом которой будет 7 .

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

Разберем пример такого вычисления.

Условие: найдите, сколько будет ( 3 + 1 ) · 2 + 6 2 : 3 − 7 .

Решение

У нас есть выражение со степенью, значение которого надо найти в первую очередь. Считаем: 6 2 = 36 . Теперь подставим результат в выражение, после чего оно примет вид ( 3 + 1 ) · 2 + 36 : 3 − 7 .

Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание.

( 3 + 1 ) · 2 + 36 : 3 − 7 = 4 · 2 + 36 : 3 − 7 = 8 + 12 − 7 = 13

Ответ: ( 3 + 1 ) · 2 + 6 2 : 3 − 7 = 13 .

В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

Порядок действий в математике

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные операции в математике

Основные операции, которые используют в математике — это сложение, вычитание, умножение и деление. Помимо этих операций есть ещё операции отношения, такие как равно (=), больше (>), меньше ( )
меньше (

Порядок вычисления простых выражений

Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:

  • действия выполняются по порядку слева направо
  • сначала выполняется умножение и деление, а затем — сложение и вычитание.

Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.

Что первое, умножение или деление? — По порядку слева направо.

Сначала умножение или сложение? — Умножаем, потом складываем.

Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Рассмотрим порядок арифметических действий в примерах.

Пример 1. Выполнить вычисление: 11- 2 + 5.

В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.

Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.

Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?

Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.

Читайте также:
Программа у кого лучше свадьба

Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.

Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.

Например, в такой последовательности можно решить пример по действиям:

Действия первой и второй ступени

В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.

  • Действиями первой ступени называют сложение и вычитание, а умножение и деление — действиями второй ступени.

С этими терминами правило определения порядка выполнения действий звучит так:

Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).

Порядок вычислений в выражениях со скобками

Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:

Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.

Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.

Рассмотрим порядок выполнения действий на примерах со скобками.

Пример 1. Вычислить: 10 + (8 — 2 * 3) * (12 — 4) : 2.

Как правильно решить пример:

Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.

Начнем с первого 8 — 2 * 3. Что сначала, умножение или вычитание? Мы уже знаем правильный ответ: умножение, затем вычитание. Получается так:

8 — 2 * 3 = 8 — 6 = 2.

Переходим ко второму выражению в скобках 12 — 4. Здесь только одно действие – вычитание, выполняем: 12 — 4 = 8.

Подставляем полученные значения в исходное выражение:

10 + (8 — 2 * 3) * (12 — 4) : 2 = 10 + 2 * 8 : 2.

Порядок действий: умножение, деление, и только потом — сложение. Получится:

10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.

На этом все действия выполнены.

Ответ: 10 + (8 — 2 * 3) * (12 — 4) : 2 = 18.

Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.

Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).

Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:

Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:

5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.

Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.

Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.

Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.

И, как всегда, рассмотрим, как это работает на примере.

Пример 1. Вычислить (4 + 1) * 3 + 62 : 3 — 7.

В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.

Подставляем полученное значение в исходное выражение:

(4 + 1) * 3 + 36 : 3 — 7.

Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:

(4 + 1) * 3 + 36 : 3 — 7 = 3 * 3 + 36 : 3 — 7 = 9 + 12 — 7 = 14.

Ответ: (3 + 1) * 2 + 62 : 3 — 7 = 14.

Закрепить на практике тему «Порядок действий» можно на курсах по математике в Skysmart!

Порядок действий

Для правильного вычисления значений числовых выражений, в которых нужно произвести более одного действия, необходимо знать установленный порядок выполнения арифметических действий.

Порядок действий без скобок

Установленный порядок арифметических действий без скобок:

    Если выражение содержит только действия на сложение и вычитание, то они выполняются в порядке следования — слева направо:

Если выражение содержит только действия на умножение и деление, то действия выполняются в порядке следования — слева направо:

Если в выражении присутствуют и умножение с делением, и сложение с вычитанием, то сначала выполняются умножение и деление в порядке их следования (слева направо), а затем сложение и вычитание в порядке их следования (слева направо):

Порядок действий со скобками

Если выражение содержит скобки, то сначала выполняются все действия внутри скобок, а затем все действия, находящиеся за скобками.

Читайте также:
Программа выполнения работ это

В числовых выражениях со скобками порядок выполнения арифметических действий такой же, как и в выражениях без скобок.

Скобки применяются для обозначения действий, которые нужно произвести раньше остальных. Скобки не влияют на порядок остальных действий в выражении, остальные действия выполняются в указанном порядке.

Дробная черта

Дробная черта в выражении может быть заменена на знак деления, в этом случае, всё что было над и под дробной чертой надо взять в скобки. Например:

13 + 2 = (13 + 2) : (10 — 7).
10 — 7

Знак деления в выражении можно заменить дробной чертой только в том случае, если это не нарушает порядок действий. Например, выражение:

нельзя заменить на

20 ,
4(2 + 3)

потому что такая замена нарушит порядок действий в данном выражении.

20 : 4(2 + 3) ≠ 20 ;
4(2 + 3)
20 = 20 : (4(2 + 3)).
4(2 + 3)

Дробная черта в выражении заменяет скобки и означает, что надо вычислить отдельно выражение, стоящее в числителе, и отдельно выражение, стоящее в знаменателе, и первый результат разделить на второй.

Источник: all-equa.ru

Примеры по действиям с многозначными числами для 4 класса

Подборка примеров со скобками на порядок действий для отработки вычислительных навыков.

Цель: формирование умения определять порядок выполнения действий в числовых выражениях со скобками.

Данную подборку примеров на порядок действий можно для удобства разделить на карточки по 5 штук. Чтобы достичь хороших результатов каждый день нужно решать именно такое количество. Ответы на примеры с многозначными числами даны для самоконтроля учащихся.

Ранее мы разбирали алгоритм решения примеров на порядок действий в 3-4 классе со скобками и без.

Вспомним алгоритм решения примеров на порядок действий со скобками:

Главное правило: если в примере есть скобки, то сначала выполняем действия в скобках, затем умножение и деление, и потом — сложение и вычитание начиная слева направо.

  1. При решении примера сначала избавьтесь от скобок.
  2. Вычислите и запишите полученный результат на месте скобок.
  3. Выполните действия по порядку.

Разберем порядок вычисления примера со скобками пошагово:

Пример

Пример

  1. Определим порядок действий и запишем их над арифметическими знаками.
  2. Найдём значение выражения, заключённого в скобках: сначала умножение или деление, потом сложение или вычитание слева направо.
  3. Приступим к действиям вне скобок/можно решать одновременно.

16 : 2 + (5 ⋅ 7 – 13) – 48 : 6 = 8 + (35 – 13) – 8 = 8 + 22 – 8 = 22.

Примеры на порядок действий со скобками (сложение, вычитание, умножение, деление)

Задание: расставь порядок действий и найди значение выражения.

  1. 9464 : 91 + (926 * 50 – 9601) =
  2. 3091 – 9 * (161 + 42) + 1791 =
  3. (349 + 636 : 6) + 9914 – 412 =
  4. (2340 : 5 + 932) : 50 =
  5. 801 + (8049 – 818) * 4 =
  6. 3402 + (1334 : 23 + 7026) =
  7. 81 * 13 + (6043 – 5711) : 2 =
  8. 71 * 38 + (322 * 2 + 7011) =
  9. (744 + 256) : 50 + 724 =
  10. (1561 + 2810) – (2004 + 2330 : 5) =
  11. 550 : (610 – 555) + 292 * 31 =
  12. (859 + 99) – 141 * 5 + 200 =
  13. 71 * 265 – (1554 : 74 + 375) =
  14. (2011 + 9411) + 6633 : 33 =
  15. 462 : (560 – 546) * 27 + 521 =
  16. 1908 : 12 * (1093 – 809) =
  17. (6105 : 5 — 450) + 613 – 105 =
  18. 964 + (6643 – 5963) * 155 =
  19. 112 * 49 – (1478 + 2411) – 322 =
  20. 9726 – (1430 – 86) : 42 – 2016 =
  21. 1390 : (528 – 518) + (9493 + 185) =
  22. 3012 + (3010 – 2110) * 6 + 411 =
  23. 8505 : 21 + (1585 – 914) : 61 =
  24. 351 * 0 + (1137 + 9120) : 3 =
  25. (7196 – 1750) + (5310 : 5 + 2822) =
  26. (4278 : 93 + 924 : 42) + 631 =
  27. 714 : 7 + (9756 – 4197) : 3 =
  28. (5861 + 14) : 25 + (234 + 390) =
  29. (1117 + 3250) – 132 * 13 =
  30. (96 * 214 – 14) + (4126 + 54) : 2 =

Ответы на примеры по действиям с многозначными числами:

Источник: koncpekt.ru

Контрольная работа «Примеры на порядок действий» 5 класс

После того как вы поделитесь материалом внизу появится ссылка для скачивания.

Получить код —>

Математика — еще материалы к урокам:

  • Контрольная работа «Признаки делимости» 5 класс
  • Контрольная работа «Площадь прямоугольника» 5 класс
  • Контрольная работа «Площади и объёмы» 5 класс
  • Контрольная работа «Обыкновенные дроби. Умножение и деление на 10, 100. Преобразование чисел, полученных при измерении» 5 класс
  • Презентация «Использование различных приемов и методов обучения математике, способствующих развитию УУД»
  • Презентация «Счёты»
Предметы
  • /algebra/Алгебра
  • /angliyskiy-yazyk/Английский язык
  • /biologiya/Биология
  • /georgrafiya/География
  • /geometriya/Геометрия
  • /izo/ИЗО
  • /informatika/Информатика
  • /istoriya/История
  • /literatura/Литература
  • /matematika/Математика
  • /music/Музыка
  • /mhk/МХК
  • /nachalnaya-shkola/Начальная школа
  • /obzh/ОБЖ
  • /obschestvoznanie/Обществознание
  • /okruzhayuschiy-mir/Окружающий мир
  • /orkse/ОРКСЭ
  • /pedagogika/Педагогика
  • /russkiy-yazyk/Русский язык
  • /tehnologiya/Технология
  • /fizika/Физика
  • /fizkultura/Физкультура
  • /himiya/Химия
  • /ekologiya/Экология
Похожие материалы
  • 4-06-2017, 11:01 Контрольная работа «Порядок действий в выражениях со скобками и без»
  • 29-05-2017, 22:39 Контрольная работа «Табличное умножение и деление, порядок действий
  • 12-03-2017, 15:13 Контрольная работа «Употребление предлогов. Порядок слов в
  • 13-07-2016, 15:23 Презентация «Порядок действий в выражениях» 2 класс
  • 18-04-2016, 12:36 Разработка урока по математике в 5 классе «Порядок выполнения
  • 3-08-2015, 16:38 Урок математики во 2 классе «Порядок действий в выражении»
  • 1-08-2015, 10:37 Презентация «Порядок действий. Закрепление» 4 класс
  • 17-07-2015, 11:50 Презентация «Порядок выполнения действий в выражениях» 3 класс

Источник: uchitelya.com

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru