Робот – это машина, которая способна принимать информацию из внешней среды с помощью системы датчиков, самостоятельно обрабатывать ее и менять характер своих действий в соответствии с этим. Самое главное все эти операции должны происходить без участия человека. Именно по этой причине телеуправляемая модель, даже если она конструктивно сложна и имеет антропоморфный вид, не может считаться роботом, в то время как простой термостат или даже плавкий предохранитель в этом смысле являются простейшими роботами.
Конструирование робототехнической системы – это многоплановая задача, требующая знаний по широкому кругу научных и технических вопросов. Изготовление электромеханических исполнительных узлов, например, ходовой части робота, потребует знаний по общей механике, электротехнике.
Создание алгоритма действий для робототехнической системы, требует знаний по информатике, в первую очередь навыков программирования. Для получения информации из внешней среды роботу необходимы различные датчики, использование которых потребует знания физических принципов работы этих датчиков. Создание всей системы в целом невозможно без знания электроники. Таким образом, процесс создания робототехнической системы потребует в процессе работы получения большого объема информации по различным естественно научным и физико-математическим дисциплинам, выходящего далеко за пределы объема школьной программы.
ПЕРВАЯ ПРОГРАММА НА ARDUINO [Уроки Arduino #3]
В настоящее время существует несколько основных путей позволяющих приступить к воплощению робототехнической системы. Первый использование готовых наборов для конструирования роботов, такие наборы изготовляет известный производитель конструкторов для детей фирма Lego. Они содержат все необходимые компоненты для изготовления робота: блок микроконтроллера, электродвигатели, датчики. Несомненное достоинство этого пути в том, что сконструировать робота на основе готового набора можно просто и быстро.
Все необходимое программное обеспечение прилагается к роботу и имеет интуитивно понятный интерфейс. Однако стоимость таких наборов неоправданно высока, за не слишком большой набор датчиков и исполнительных механизмов, а также за набор стандартных пластмассовых деталей придется отдать весьма значительную сумму. Таким образом, подобные конструкторы лучше всего подходят для младшей возрастной группы. Если в кружке в основном занимаются старшеклассники, то разумнее средства отпускаемы на оснащение кружка технического творчества, пустить на приобретение измерительных приборов, инструментов, материалов и комплектующих, а не на приобретение подобных наборов.
Второй путь это создание полностью оригинальной робототехнической системы, используя выпускаемые промышленностью микроконтроллеры, дискретные радиоэлементы, электродвигатели и т.п.. Действуя таким путем можно получить на выходе устройство, не уступающее по своим функциональным возможностям устройству, изготовленному в заводских условиях. Правда это потребует досконального знания выбранного микроконтроллера и Ассемблера специфичного для данного микроконтроллера. И это не говоря о наличии хотя бы минимального станочного парка, для обслуживания которого нужны специалисты с профильным образованием. В условиях кружка технического творчества этот путь мало реализуем, во всяком случае, если кружок только приступает к изучению вопросов робототехники.
Программирование Ардуино с нуля. Arduino для начинающих.
Кроме приведенных выше вариантов, существует и третий путь – использование вычислительной платформы Arduino. Ее основой является специальная плата с микроконтроллером, а также специализированная среда разработки Wiring, созданная на основе языка C++.
Программное обеспечение полностью бесплатное, его можно скачать с официального сайта производителя. Имеются версии для всех основных операционных систем Windows, Linux, MacOS. При разработке программной части комплекса в данной среде от нас скрываются многие рутинные операции, что упрощает разработку. Однако с другой стороны программа пишется на языке высокого уровня, по этому при компиляции в машинные коды, полученная программа не будет оптимальной по размеру и времени выполнения.
Иными словами программа, написанная на языке Ассемблер, будет занимать места меньше, а выполняться быстрее. Если конструируется учебный робот, или бытовое электронное устройство, в большинстве случаев это не столь важно, в самом деле, если сигнализация среагирует на разбитое окно не через 0,1 с, а через 0,2 с, это ничего принципиально не изменит. Однако в ответственных случаях объем памяти требуемый для программы, и особенно, скорость работы могут стать критически важными, по этому среди специалистов по разработке аппаратно-программных комплексов отношение к данной платформе как минимум неоднозначное. Впрочем, в системах жизнеобеспечения, промышленных, авиационных и космических системах использовать Arduino никому и не придет в голову, к тому же любители крайне редко сталкиваются с необходимостью создания подобных систем.
В любительской же среде Arduino фактически стала стандартом. Применение законченных функциональных блоков Arduino очень сильно упрощает и, следовательно, ускоряет изготовление устройств. Нам важно как тот или иной блок реагирует на определенные сигналы и воздействия, но не принципиально его внутренне устройство. Фактически узлы Arduino являются, с точки зрения кибернетики, «черными ящиками». Однако, есть мнение, что Arduino – это своеобразный радиолюбительский фаст фуд, использование которого недостойно настоящего радиолюбителя.
На это можно возразить, что практически любое электронное устройство собирается из деталей заводского изготовления. В конечном счете, что такое любая микросхема, как не «черный ящик», нам важно как микросхема отвечает на тот или иной электронный сигнал, при этом ее внутреннее устройство, как правило, неизвестно, или мы его знаем только приблизительно. Если отрицать использование готовых узлов можно прийти к тому, что настоящий радиолюбитель должен сам делать радиолампы (как изготовить в кустарных условиях транзистор я не представляю) или, вообще, сначала осваивать добычу медной руды, выплавку метала и волочение проволоки.
В общем, Arduino позволяет с одной стороны изучить основы работы с микроконтроллерами и конструировать законченные устройства, с другой объем первоначальных знаний, необходимых для начала работы не слишком велик, и вполне доступен школьнику.
Описание аппаратной части Arduino
Физически Arduino представляет собой небольшую печатную плату. Самой распространенной на данный момент версией является Arduino UNO с габаритами 75×55 мм.
На плате располагается микроконтроллер ATMega328, этот микроконтроллер имеет 2 кб оперативной памяти и 32 кб памяти флэш-памяти для программ. Пользователю доступно несколько меньшая часть памяти программ, потому что часть памяти программ отведено под программу-загрузчик, которая управляет работой платы при загрузке в нее пользовательской программы.
Платы заводского изготовления обычно поставляются уже с записанной в память программой-загрузчиком. Если отдельный микроконтроллер, программируемый на Ассемблере, достаточно легко довести до неработоспособного состояния неверными командами, то с Arduino это сделать несколько сложнее, т.к. программное обеспечение Arduino играет роль «защиты от дурака», защищая микроконтоллер от неверных действий начинающего пользователя. Кварцевый резонатор задает тактовую частоту работы микроконтроллера 16 МГц. Так же в микроконтоллере имеется внутренний кварцевый резонатор на частоту 8 МГц, но его обычно не используют.
Для связи с компьютером на плате имеется разъем USB-BF. На платах разных производителей в этой части возможны существенные различия, кроме USB-BF автору встречались платы с micro-USB, на старых и самодельных платах, скорее всего, будет 9-контактный разъем COM-порта. На плате Arduino UNO установлен специальный преобразователь, поэтому подключенная к компьютеру плата, определяется как новый COM-порт. Одно из преимуществ Arduino состоит в том, что благодаря наличию программы загрузчика и возможности подключения Arduino к персональному компьютеру для ее программирования не нужен отдельный программатор.
Подключенная к компьютеру плата Arduino питается через USB-порт. Если плата используется отдельно, то необходимо подключить к плате блок питания с выходным постоянным напряжением 7-12 В, разъем питания, вероятно, типа DS-210. На плате имеется стабилизатор напряжения, поэтому к качеству питающего напряжения устройство нетребовательно. Подойдет почти любой малогабаритный блок питания. В автономных условиях подходит 9 В батарея типа «Крона», или две последовательно соединенные батареи типа 3R12 (3336).
На плате располагается 14 цифровых портов ввода-вывода, 6 из которых поддерживают широтно-импульсную модуляцию (помечены на плате знаком «~»).
Кроме цифровых на плате есть 6 аналоговых портов. Аналоговые порты подключены в 10 битному аналогово-цифровому преобразователю, при необходимости их также можно использовать в качестве цифровых портов.
На плате имеются четыре светодиода – индикатор питания (обозначен, как ON), светодиод, подключенный к 13 порту (L), два светодиода индикации обмена данными через последовательный порт (TX и RX). Также на плате имеется кнопка для перезагрузки микроконтроллера.
Одним из достоинств Arduino является то, что кроме основной платы производится дополнительные платы, расширяющие возможности основного устройства. Такие платы расширения называют Shield, что дословно можно перевести как «щит» или «экран», обычно в русскоязычной литературе используется англицизм «шилд». Шилды позволяют подключать к Arduino электродвигатели, обеспечивают выход в компьютерные сети по протоколу Ethernet или WiFi, передачу информации по сети сотовой связи GSM, и выполняют многие другие функции. Для работы с такими платами существуют готовые программные библиотеки.
Плата Arduino UNO
Плата Arduino UNO хорошо подходит для отладки программ на стадии разработки и настройки конструкций. Но для множества практических приложений возможности Arduino UNO избыточны, ее размер для установки в готовые изделия может оказаться слишком большим. Кроме этого к Arduino UNO внешние устройства подключаются без пайки – с помощью разъемов. Со временем разъем может выпасть от вибрации или его контакты окислятся, что нарушит нормальный контакт, с очевидными последствиями для изготовленного устройства.
Для использования в готовых изделиях выпускаются платы ArdinoNano и ArdinoMini, они имеют меньшие физические размеры, и несколько меньшую стоимость. Эти платы совместимы программно с Arduino UNO, но не позволяют непосредственно подключать к ним шилды. ArdinoNano – плата уменьшенного размера, имеет разъем для непосредственной связи с компьютером, выводы позволяют использовать более надежное паяное соединение. ArdinoMini – еще более уменьшена, по сравнению с ArdinoNano, на плате отсутствует разъем для прямого подсоединения к компьютеру, для программирования требуется специальный переходник.
Если возможностей Arduino UNO недостаточно, можно применить расширенную версию ArdinoMega. Эта плата имеет расширенные возможности 54 цифровых порта из них 15 поддерживают ШИМ,16 — аналоговых портов, 128 кб (в поздних версиях 256 кб) — флэш-памяти для программ, 8 кб оперативной памяти.
Перечень различных вариантов аппаратной реализации Ardino этим платами не ограничивается, но подобные устройства ориентированы на специалиста достаточно высокой квалификации и для первоначального изучения подходят мало. Более подробно различные варианты плат описаны тут.
Основной стандарт плат Arduino, тоже изменялся со временем. Более подробно с различными версиями плат можно познакомиться на сайте разработчика. На данный момент самым современным вариантом является Arduino Leonardo. Однако на данный момент Arduino UNO распространена наиболее широко, так что в дальнейшем остановим свое внимание именно на Arduino UNO.
Надо отметить, что конструктивно Arduino не очень сложна и вполне доступна для самостоятельного изготовления, во всяком случае, если речь идет о подготовленном радиолюбителе-конструкторе. На сайте разработчика имеется вся необходимая документация для самостоятельного изготовления Arduino.
Вообще проект Ардуино полностью открытый, авторским правом охраняется только сам термин «Arduino», поэтому множество сторонних производителей выпускают свои конструкции: Freeduino, Japanino, Seeeduino, CraftDuino, Diavolino и т.п. Существуют платы, как полностью повторяющие оригинальные, так и собственные разработки, часть из которых совместима с Arduino только программно, из-за того, что платы имеют отличную конфигурацию. В целом, на современном уровне производства электронных устройств, платы Arduino не содержат в себе каких-то действительно высоких технологий, поэтому приемлемый для любителя уровень качества способны обеспечить не только производители оригинальных устройств, но и малоизвестные фирмы, которые предлагают аналогичные конструкции по существенно более низким ценам.
Если плата заявлена как копия Arduino UNO, то, скорее всего, все сказанное о Arduino UNO будет относиться и к ней, хотя конечно за конкретного китайского производителя поручиться нельзя. Собственно конкретная плата, которая использовалась автором, обозначена просто UNO, слово «Arduino» отсутствует, так что это плата безвестного азиатского производителя, который уважает авторское право разработчиков оригинального проекта. Не смотря на сомнительное происхождение, ни каких нареканий к качеству самой платы автор предъявить не может. С вами был Denev.
Источник: radioskot.ru
Пример программы для ардуино уно
Среда программирования Arduino IDE позволяет в программу на языке C++ вставлять фрагменты кода на языке AVR Assemler.
Эта статья для начинающих программировать в среде Ардуино. Здесь мы приведём программу Blink из стандартных примеров Arduino IDE и перепишем её на языке AVR Assembler в среде Arduino IDE.
На многих Ардуино совместимых платах, в том числе и на плате Arduino UNO или Arduino NANO, присутствует светодиод, который можно использовать для тестирования работоспособности платы.
void setup() < pinMode(LED_BUILTIN, OUTPUT); >void loop()
Скетч использует 932 байт (2%) памяти устройства. Всего доступно 32256 байт. Глобальные переменные используют 9 байт (0%) динамической памяти, оставляя 2039 байт для локальных переменных. Максимум: 2048 байт.
Пример 1. Программа мигающая светодиодом на плате Arduino UNO или Arduino NANO.
В программе из примера 1 есть ключевое слово, несколько функций (команд) и несколько констант.
void | ключевое слово | Определяет тип следующего за ним объекта как не возвращающий значения |
setup() | функция | Обязательно должна присутствовать в Ардуино программе. |
loop() | функция | Обязательно должна присутствовать в Ардуино программе. Организует бесконечный цикл. |
pinMode() | функция | Настраивает функционирование определённой ножки (pin) микроконтроллера. |
digitalWrite() | функция | Включает определённый логический уровень на ножке (pin), если эта ножка настроена как выход. |
delay() | функция | Останавливает выполнение программы на заданное время |
LED_BUILTIN | константа | Значение для Arduino UNO 13 |
OUTPUT | константа | true или 1 |
LOW | константа | false или 0 |
HIGH | константа | true или 1 |
Рассмотрим часть принципиальной электрической схемы платы Arduino.
Рис. 1. Светодиод на плате Ардуино подключён к выводу D13.
На рис. 1 мы видим, что порт PB5 микроконтроллера ATMega328 соединён с выводом D13 платы Ардуино. Когда на выводе D13 установлен логический 0, светодиод LD1 не горит. Когда — логическая 1 (~4,5 Вольт), ток идёт из микроконтроллера вывод D13 платы Ардуино через резистор R1, светодиод LD1 на общий провод с потенциалом 0 Вольт. Светодиод горит.
В программе из примера 1 в функции setup() функция pinMode(LED_BUILTIN, OUTPUT) настраивает вывод D13 платы Ардуино как выход. LED_BUILTIN=13.
В функции loop() функция digitalWrite(LED_BUILTIN, LOW) устанавливает на выводе D13 логический 0. Светодиод LD1 не горит. Функция digitalWrite(LED_BUILTIN, HIGH) устанавливает на выводе D13 логическую 1. Светодиод LD1 горит.
Микроконтроллер ATMega328 установленный на плате Ардуино работает очень быстро. Он выполняет 1 ассемблерную команду за 1 такт тактового генератора. Тактовая частота микроконтроллера ATMega328 на плате Ардуино 16 МГц. Значит период 1 такта 0,0000000625 сек (1/16000000). Именно за это время выполняется каждая ассемблерная команда.
Если с такой скоростью переключать светодиод мы мерцаний не заметим. Поэтому в программе пример 1 добавлены функции delay(), которые выполняют задержку. После включения светодиода задержка выполнения программы 450 миллисекунд., а после включения 50 миллисекунд.
Подытожим в функции loop(), в цикле, то есть непрерывно повторяясь, светодиод LD1 выключен 450 миллисекунд и включается на 50 миллисекунд.
Перепишем программу из примера 1 учитывая значения констант и тот факт, что электрические сигналы на ножках микроконтроллера ATMega328 зависят от значений записанных в 8-ми битные управляющие регистры микроконтроллера. Уровень сигнала на порту PB5 зависит от состояния 5-го бита в регистре PORTB, а настройка порта PB5 как вход или выход зависит от состояния 5-го бита в регистре DDRB.
void setup() < DDRB = 0b00100000; >void loop()
Скетч использует 654 байт (2%) памяти устройства. Всего доступно 32256 байт. Глобальные переменные используют 9 байт (0%) динамической памяти, оставляя 2039 байт для локальных переменных. Максимум: 2048 байт.
Пример 2. Программа мигающая светодиодом на плате Arduino UNO или Arduino NANO.
Программы из примера 1 и примера 2 не тождественны, но работают одинаково.
Заменим в программе из примера 2 операторы присваивания (=) ассемблерными вставками.
void setup() < asm volatile ( «ldi R16, 0b00100000 n» «out 0x04, R16 n» ); >void loop()
Скетч использует 654 байт (2%) памяти устройства. Всего доступно 32256 байт. Глобальные переменные используют 9 байт (0%) динамической памяти, оставляя 2039 байт для локальных переменных. Максимум: 2048 байт.
Пример 3. Программа мигающая светодиодом на плате Arduino UNO или Arduino NANO с ассемблерными вставками.
В примере 3 вы видите 3 ассемблерные вставки. Все они практически одинаковые и состоят из 2 строк кода на AVR Assembler. команда LDI загружает в регистр общего назначения восьми-битное число. Команда OUT копирует значение из регистра общего назначения (РОН) в регистр (РВВ). К сожалению, указать в команде OUT имя регистра ввода вывода DDRB или PORTB в среде разработки Arduino нельзя.
Мы взяли адреса этих регистров в памяти микроконтроллера из файла m328Pdef.inc. Файл m328Pdef.inc приведён в конце статьи.
Как видите, ассемблерные вставки в скетче Ардуино не являются удобным инструментом. Мне кажется более удобно хранить программу в 2-х файлах, отдельно Си-код и отдельно код на Ассемблере. Причем, если файл с программой на Ассемблере имеет расширение «S», и хранится в той же папке что и файл с программой на Си с расширением ino, то оба файла при компиляции объединяются в одну программу автоматически. Arduino IDE открывает оба файла на редактирование.
.global D13OUT .global D13OFF .global D13ON .equ DDRB, 0x04 .equ PORTB, 0x05 D13OUT: ldi R16, 0b00100000 out DDRB, R16 ret D13OFF: ldi R16, 0b00000000 out PORTB, R16 ret D13ON: ldi R16, 0b00100000 out PORTB, R16 ret
Файл с расширением «S».
extern «C» < extern __FlashStringHelper *D13OUT(void); extern __FlashStringHelper *D13OFF(void); extern __FlashStringHelper *D13ON(void); >void setup() < D13OUT(); >void loop()
Файл с расширением «ino».
Скетч использует 672 байт (2%) памяти устройства. Всего доступно 32256 байт.
Глобальные переменные используют 9 байт (0%) динамической памяти, оставляя 2039 байт для локальных переменных. Максимум: 2048 байт.
Пример 4. Программа мигающая светодиодом на плате Arduino UNO или Arduino NANO с функциями на ассемблере.
В программе из примера 4 на ассемблере написано 3 функции, а в коде на C++ эти функции подключаются как внешние (extern) и затем используются самым обычным образом.
Перепишем программу из примера 4 с передачей параметра.
.global D13OnOff .equ DDRB, 0x04 .equ PORTB, 0x05 D13OnOff: ldi R16, 0b00100000 out DDRB, R16 out PORTB, R24 ret
Файл с расширением «S».
extern «C» < extern __FlashStringHelper *D13OnOff(byte); >void setup() < >void loop()
Файл с расширением «ino».
Скетч использует 662 байт (2%) памяти устройства. Всего доступно 32256 байт.
Глобальные переменные используют 9 байт (0%) динамической памяти, оставляя 2039 байт для локальных переменных. Максимум: 2048 байт.
Пример 5. Программа мигающая светодиодом на плате Arduino UNO или Arduino NANO с функцией на ассемблере.
Файл m328Pdef.inc
- Вы здесь:
- Главная
- Робототехника
- Assembler в Arduino
- Игра Сапёр v3 на Python
- Игра Flip-Flop v3
- Lines98
- Микрофон
- Калькулятор v3
- Где ест уж v3
- Транзистор и фоторезистор.
- Датчик препятствий
- Игровое поле из Button
- Игра Memory
- Датчик инфракрасных импульсов
- Типы C++
- 3-D модель катушки ротора
- ESP32-C3 Wi-Fi точка доступа
- ESP32-C3 FTM
- ESP32-C3 Sigma-Delta модуляция
- Установка Arduino IDE для ESP32-C3
- ESP32-C3 analogReadMilliVolts
- ESP32-C3 Serial.print
- ledcWriteNote для ESP-C3-Kit
- Плата ESP-C3-32S Kit
- ШИМ в ESP-C3 Kit
- Программа Blink для ESP-C3 Kit
- Подключение ESP-C3-Kit к Arduino IDE
- Плата ESP-C3-13 Kit
- Калькулятор с tkinter
- Драйвер моторов MX1508
- Калькулятор на Arduino
- Raspberry Pi Pico Python SDK
- Raspberry Pi Pico C/C++ SDK
- Программирование на MMBASIC
- PicoMiteVGA
- Сервопривод и Ардуино
- Arduino машина с ИК управлением
- Двигатель постоянного тока
- ИК пульт ДУ
- Ультразвуковой дальномер HC-SR04
- АЦП и ШИМ в Arduino
- Крестики нолики v2.0
- Программа для музыкальной шкатулки
- Ханойские башни, игра
- Flip-Flop 4×4 и ООП
- AT90S2013 с внешним генератором
- Игра Кто быстрее
- Игра головоломка Peg
- Поход в пустыню
- Оригинальная игра Сапёр
- Программирование ATtiny861
- Программирование AT90S2013
- StringVar или ООП
- Клеточный автомат Конвея
- Flip-Flop 4×4 .
- ООП, after() функция задержки в tkinter
- Программирование AtTiny 13, 45, 85
- Игра-головоломка Где ест уж
- Игра-головоломка Чайный сервиз
- Пишем игру Flip-Flop v2
- Игра Быки и коровы на Python v2
- Крестики нолики
- Python сортировка
- Игра Красный или Синий?
- Индикатор 788BS
- Python Факториал
- Генератор псевдослучайных чисел
- Датчик температуры в ATtiny88
- Serial порт в ATtiny88
- Пишем библиотеку для MAX7219 и LED матрицы
- MAX7219 и Arduino
- Прерывания PCINT в Arduino
- Функция sleep() в Arduino для ATtiny88
- ATtiny88 datasheet на русском
- Фьюзы ATtiny88
- Arduino Fading and Blink
- Алгоритм Евклида. Нахождение НОД
- Python Числа Фибоначчи
- Python Tkinter игра Пикассо и Модильяни
- Ищем программатор для STM 32F030F4P6
- Python Tkinter игра Раскраска
- Пишем игру Быки и Коровы на Python
- Головоломка Ханойские башни на Python
- Головоломка Ханойские башни на Си
- Пишем игру Сапёр на Python
- Raspberry Pi Pico fading.py
- LCD МТ-16S2H и LiquidCrystal_74HC595
- EasyEDA для инженеров-электронщиков
- LCD МТ-16S2H и LiquidCrystalRus
- Raspberry Pi Pico и MicroPython
- Пишем игру пятнашки на Python
- Пишем игру на Python
- ESP8266 версии плат
- Регистр К155ИР13
- Linux или FreeBSD
- Триггеры
- Счетчик импульсов на 7493
- Счетчик импульсов на D-триггерах
- Цифровые индикаторы с общим катодом
- ATtiny88 программируем в Arduino IDE
- Конденсатор в кружке Робототехника
- Генератор на 555-м таймере
- Генератор НЧ на LM358
- Tkinter виджеты
- Pydoc в Python
- LM358 управление голосом
- Несимметричный мультивибратор
- QX5252F схема включения
- DC-DC uk преобразователь на QX5252
- DC-DC преобразователь на QX5252
- Python с Pygame обработка столкновений
- Логика в Python
- Сова на телевизор
- Транзисторы p-n-p и n-p-n
- IDLE
- Thonny установка и настройка
- Timer/Counter1 ATmega328
- Arduino IDE
- ATMEGA8
- Прерывания по таймерам в Arduino
- DC-DC преобразователь
- LED лампа светодиодная
- MOSFET
- Концепция музыкальной программы для Arduino
- Стробоскоп на 555-м таймере
- ШИМ на 555-м таймере
- ШИМ управление мощностью нагрузки
- Вентилятор для CPU и Arduino
- ATmega328P
- Храним константы в Flash-памяти программ
- Храним константы в EEPROM
- Параметры по умолчанию
- Цикл for in в Arduino
- Драйвер MAX7219 и светодиодная матрица 8х8
- WS2811 и RGB светодиод
- Assembler в Arduino
- Python Gtk игра Раскраска
- LGT8F328P в Arduino IDE
- Адрес i2c
- Музыкальная шкатулка
- LCD 1602 i2c и Arduino
- Корпус VESA для Orange Pi PC 2
- Blink для адресуемых RGB светодиодов
- ESP8266-01 Web-сервер
- ESP8266 прошивка AT-espressif
- Edragon, ESP firmware
- Esptool
- ESP8266 в Arduino IDE
- ESP8266-01 подключение USB-UART
- ESP8266-01 AT интерпретатор
- CuteCom монитор порта
- ESP8266-01 подключение
- SSD1306 IIC print()
- ATMega328 в Arduino без кварца
- Фьюзы в Arduino UNO
- Программирование Arduino Pro Mini
- L7805 стабилизатор напряжения
- MLX90614 — ИК термометр
- Датчик ИК импульсов
- Arduino-Hava Nagila
- Arduino-Финская полька
- Arduino-Гимн РФ
- Arduino-Григ В пещере Горного Короля
- heaptrack профилировщик памяти
- Консольная программа на Visual J#
- Консольная программа на C#
- Консольная программа на Visual Basic.NET
- Blender на русском
- Arduino Digispark ATTiny85
- cairo.Context object Деформации
- cairo.Context object Фигуры Лиссажу
- cairo.Context object Движение по криволинейной траектории
- cairo.Context object Пинг-понг по стенкам
- cairo.Context object Загружаем картинку
- cairo.Context object Трансформация прямоугольных координат
- cairo.Context object Штриховые линии
- cairo.Context object Шар с радиальной заливкой
- cairo.Context object Градиентная заливка
- cairo.Context object Сдвигаем и вращаем начало координат
- cairo.Context object Начало координат
- cairo.Context object Сглаживание контура изображения или шрифта
- cairo.Context object Углы соединения линий
- cairo.Context object Рисуем линии
- Gtk Drawin Area и GObject
- Gtk Drawin Area и PangoCairo
- Python Gtk окно с текстом
- Python Gtk игра Flip-Flop
- Python Gtk Крестики — нолики
- Anjuta Gtk Python Кнопка
- Visual Studio Code редактор
- Vala язык программирования
- Anjuta Gtk Python
- Glade Gtk Python сигналы
- Glade Gtk Python
- Python графическая библиотека Turtle
- Python графическая библиотека GTK
- Python графическая библиотека Tkinter
- Инкубатор
- Пример программы на Python с библиотекой Pygame
- Создание игр на Python с Pygame
- Классическая игра Жизнь
- Игра Жизнь на дисплее SSD1306 и Arduino
- SSD1306 Display
- Импульсный регулятор мощности на Ардуино
- Оператор switch case. Электронная игра на Arduino.
- Игра инверсия
- Android пишем программу на C++
- Цикл while. Алгоритм Евклида.
- Geany пишем программу на C++
- Как скомпилировать cpp под Linux
- Схема преобразователя напряжения на транзисторе
- Схема фонарика с 2-мя батарейками
- Author Login
- Карта сайта
Источник: adior.ru
Программатор из Arduino
В своих проектах я использую ранее описанную минимальную обвязку на микроконтроллере Atmega328p. На базе такой схемы я делаю различные устройства которые отлично работают. И к тому же, в них я могу записать обычный скетч через среду Arduino IDE. Чтобы записать скетч в микроконтроллер Atmega328p, на понадобиться Arduino UNO или Arduino Nano.
Тоесть чтобы мне прошить «почти плату Ардуино», мне нужна еще одна Ардуинка.
На самом деле. Arduino UNO или nano выступает здесь в роли программатора. Но для этого нам необходимо подготовить все для прошивки.
Делаем из Arduino UNO программатор.
Открываем Arduino IDE, далее Файл — Примеры — 11.ArduinoIsISP — ArduinoISP.
Откроется скетч который загружаем в обычную плату Arduino UNO. Этот скетч и сделает из нее программатор, с помощью которого и будем загружать прошивку в контроллер.
Теперь необходимо подготовить адаптер для соединения платы Ардуино и разъема для программирования вашего устройства. В моем примере универсального контроллера я использую простые соединительные провода Мама-Папа.
Распиновка следующая:
Arduino Устройство
GND GND
5V +5v
10 RST
11 MOSI
12 MISO
13 SCK
В своих проектах я предусматриваю разъемы для внутрисхемного программирования ICSP. Если раньше я делал штырьковый разъем 2*3 с шагом 2,54мм, то теперь я использую специальную прищепку с контактами pogopin. В моем примере соединяю их вот так:
Если бывает небольшой конвейер по загрузке программ в контроллеры, меня выручает одна хитрость. Я достал с одной из сторон соединительных проводов, где мамы, пластиковые корпуса. И сам металлический контакт Мама установил в готовый пластиковый разъем типа 2*3. Так гораздо удобнее подключать и маловероятно что можно перепутать.
С подключением разобрались.
Следующий шаг. Открываем скетч который необходимо загрузить в наше устройство. Далее необходимо настроить Arduino IDE чтобы использовала Arduino UNO как программатор. Для этого нажимаем Инструменты — Программатор: и в выпадающем списке выбираем «Arduino as ISP».
Теперь необходимо нажать на пункт Записать загрузчик. Там же, в инструментах.
Если вы все верно настроили, вы получите сообщение «Запись загрузчика завершена».
Теперь можно приступать к загрузке скетча. Нажимаем Скетч — Загрузить через программатор. После этого должна начаться загрузка скетча в ваше устройство с микроконтроллером Atmega328p через другую Arduino UNO.
После успешной загрузки, будет сообщение «Загрузка завершена». А на моей плате включиться светодиод, который мне говорит о том что код записался верно и без ошибок.