Принципы программирования ПЛК
В данном обзоре рассмотрим ряд вопросов, связанных с программированием современных логических контроллеров (ПЛК или PLC). Поскольку контроллеры разных производителей имеют различную конфигурацию, функционал и программные среды, будут приведены общие принципы и приемы разработки программ для ПЛК.
Техническое задание
Создание и утверждение технического задания (ТЗ) – очень важная часть разработки ПО. От грамотно составленного ТЗ зависит, насколько эффективно будет вестись разработка.
Опытные программисты знают, что программа не пишется за один раз. Как правило, софт корректируется и приближается итерациями к конечному варианту в соответствии с пожеланиями конструкторов, инженеров, электриков, механиков и технологов. Поэтому очень важно на этапе составления ТЗ плотно взаимодействовать со всеми заинтересованными специалистами, которые подписывают ТЗ, а по окончании принимают работу.
Периферия
В первую очередь составляется список всех дискретных входов и выходов контроллера. Также указываются аналоговые входы/выходы при их наличии.
Что такое плк ? | Обзор на ПЛК Delta DVP14SS211R
Входы и выходы логического контроллера — это начальные и конечные точки работы алгоритма, поэтому нужно четко представлять, как должно функционировать оборудование, под которое пишется программа.
Для решения некоторых стандартных задач можно не писать программу, а воспользоваться специализированными периферийными модулями, например, модулями обработки сигналов от тензодатчиков или от инкрементального энкодера, специализированным ПИД-регулятором и проч. В результате алгоритм работы существенно упростится, а быстродействие всей системы в целом увеличится.
Необходимо собрать подробную информацию о том, как работает тот или иной датчик, какие сигналы он выдает, например, какой выход у датчика – нормально открытый или нормально закрытый. Есть ряд нюансов, связанных с аварийным или ручным управлением выходными сигналами, например, некоторые приводы могут требовать коррекции временной задержки.
Помехоустойчивость
Важно помнить о возможных проблемах, связанных с максимальным выходным током, противо-ЭДС и различными помехами, поскольку все это скажется на стабильной работе программы и оборудования в целом.
В сложном оборудовании, где применяются преобразователи частоты, коммутируются силовые цепи и действуют мощные электромагнитные поля — эти факторы необходимо предусмотреть, чтобы минимизировать их отрицательное влияние на ПЛК. Об этом обычно подробно говорится в инструкции по установке логического контроллера.
Для повышения помехоустойчивости необходимо применять программные средства. Например, обязательным является использование сторожевого таймера, который «приводит в чувство» ПЛК при его «зависании».
Также необходимо учитывать возможное накопление ошибок, искажение поступаемых на входы данных и другие нарушения в работе программы. Для этого нужно вводить программные блоки по проверке и коррекции данных и программы. Например, несмотря на то, что при включении реверсивного пускателя используется аппаратная защита (блокировка) от одновременного включения встречных направлений, такая же защита должна быть реализована и программно.
Программирование ПЛК. Как понять язык LADDER за 5 минут!
Проблемы совместимости программы с аппаратной частью
Возможно, в процессе работы выяснится, что аппаратная часть контроллера не соответствует поставленной задаче. Например, не хватает входов или выходов, памяти или быстродействия.
Проблема с нехваткой входов или выходов легко решается приобретением дополнительных периферийных модулей. Они подключаются к центральному модулю (который имеет свои входы и выходы), обмен данных происходит по внутренней шине.
С памятью и быстродействием решить вопрос просто не получится, поэтому перед приобретением «железа» нужно обкатать программу в программном эмуляторе, который есть в каждой среде программирования.
Языки программирования и среды разработки
У каждого производителя имеется своя среда программирования, «заточенная» под конкретные модели ПЛК. Однако производители пришли к соглашению, что будут использовать унифицированные языки программирования, подходящие для разных контроллеров.
Наиболее простым и наглядным языком программирования ПЛК, входящим в каждую среду разработки является язык релейных схем LD (Ladder Diagram), максимально приближенный к функциональным электрическим схемам. Его любят использовать программисты, изначально хорошо разбирающиеся в электронике.
Другой язык, имеющий обширный функционал – FBD (Function Block Diagram), который относится к графическим языкам программирования. В FBD используются законченные блоки, имеющие определенные функции. Блоки поставляются со средой программирования или создаются программистом. Существуют и другие языки (6 стандартных), но их описание выходит за рамки данной статьи.
В программных средах разработки обычно имеется большой набор готовых библиотек элементов, подпрограммы стандартных процедур и шаблонов. Также среда разработки должна обязательно включать в себя программный эмулятор, позволяющий всесторонне проверить работоспособность программы перед ее переносом на реальный контроллер.
Среды разработки разных производителей могут включать в себя разные элементы, и за каждый из них необходимо платить. Например, Siemens предлагает множество версий программной среды, которые значительно отличаются по функционалу и цене. Другой производитель – Delta – имеет полностью открытое полнофункциональное ПО, которое можно бесплатно скачать с официального сайта.
Источник: tehprivod.su
Plc программа что это
Главная Информация Основные языки программирования контроллеров PLC
Основные языки программирования контроллеров PLC
Главная задача ПЛК – это выполнение прикладной программы управления технологическим процессом. Очевидно, что незапрограммированный контроллер – это всего лишь пустая железяка, не приносящая никакой пользы человечеству.
Какие программы может выполнять промышленный контроллер? Ответ прост: практически любые. Современный контроллер свободно программируем, т.е. предоставляет разработчику возможность создавать пользовательские программы произвольной структуры без ограничений их функциональности, будь то программа управления пастеризатором на молочном комбинате или управление колонной ректификации на НПЗ. По сути, единственным ограничением здесь может быть объем свободных ресурсов контроллера.
Что нужно, чтобы запрограммировать ПЛК? Грамотный специалист. Во-вторых, персональный компьютер или портативный программатор, подключенный к контроллеру по сети. В-третьих, программный пакет разработки, поставляемый, как правило, за дополнительную плату. Иногда среда разработки входит в состав комплексного ПО для инсталляции и эксплуатации всей системы управления.
Современные средства разработки чрезвычайно функциональны и предлагают разработчику множество возможностей:
1. Разнообразные программные библиотеки, функциональные блоки, готовые процедуры и шаблоны. Использование предподготовленных компонентов сильно ускоряет процесс разработки программного обеспечения для ПЛК.
2. Инструменты для отладки, тестирования и симуляции прикладной программы. Последние позволяют выполнять программу ПЛК на персональном компьютере без загрузки в реальный контроллер.
3. Инструменты для автоматизированного документирования разработанной программы в соответствие с принятыми стандартами.
Но у программиста есть и более мощный инструмент. Дело в том, что современные средства разработки прикладного ПО для промышленных контроллеров, как правило, поддерживают до шести разных языков программирования.
Существует международный стандарт IEC 61131, разработанный Международной Электротехнической Комиссией (МЭК, IEC) и состоящий из восьми частей. Наиболее интересной является третья часть, IEC 61131-3, описывающая языки программирования ПЛК. Первоначальной целью стандарта IEC 61131-3 была унификация языков программирования ПЛК и предоставление разработчикам ряда аппаратно-независимых языков, что, по замыслу создателей стандарта, обеспечило бы простую переносимость программ между различными аппаратными платформами и снимало бы необходимость изучения новых языков и средств программирования при переходе разработчика на новый ПЛК.
К сожалению, цели в полном объеме достигнуты не были. Каждый производитель ПЛК сопровождает свой продукт собственной средой программирования, которая, как правило, не совместима с другими, да и о кросс-платформенности программного кода можно забыть. Тем не менее, в части описания языков программирования стандарт IEC 61131 остается чрезвычайно актуальным и является ориентиром для большинства разработчиков ПЛК.
Какие языки используются для программирования промышленных контроллеров? Ниже приведен краткий обзор языков стандарта.
Язык LD
Язык LD (LAD, Ladder) является графическим языком разработки, программа на котором представляет собой аналог релейной схемы. Пример программы на данном языке приведен на рис. 1. По идеи авторов стандарта, такая форма представления программы облегчит переход инженеров из области релейной автоматики на ПЛК.
К недостаткам данного языка можно отнести то, что по мере увеличения количества «реле» в схеме она становится сложнее для интерпретации, анализа и откладки. Еще один недостаток языка LD заключается в следующем: язык, построенный по аналогии с релейными схемами, может быть эффективно использован только для описания процессов, имеющих дискретный (двоичный) характер; для обработки «непрерывных» процессов (с множеством аналоговых переменных) такой подход теряет смысл.
Рис. 1. Язык релейных диаграмм LD.
Язык FBD
Язык FBD (Functional Block Diagram, Диаграмма Функциональных Блоков) является языком графического программирования, так же, как и LD, использующий аналогию с электрической (электронной) схемой. Программа на языке FBD представляет собой совокупность функциональных блоков (functional flocks, FBs), входа и выхода которых соединены линиями связи (connections).
Эти связи, соединяющие выхода одних блоков с входами других, являются по сути дела переменными программы и служат для пересылки данных между блоками. Каждый блок представляет собой математическую операцию (сложение, умножение, триггер, логическое “или” и т.д.) и может иметь, в общем случае, произвольное количество входов и выходов. Начальные значения переменных задаются с помощью специальных блоков – входов или констант, выходные цепи могут быть связаны либо с физическими выходами контроллера, либо с глобальными переменными программы. Пример фрагмента программы на языке FBD приведен на рис. 2.
Практика показывает, что FBD является наиболее распространенным языком стандарта IEC. Графическая форма представления алгоритма, простота в использовании, повторное использование функциональных диаграмм и библиотеки функциональных блоков делают язык FBD незаменимым при разработке программного обеспечения ПЛК. Вместе с тем, нельзя не заметить и некоторые недостатки FBD. Хотя FBD обеспечивает легкое представление функций обработки как «непрерывных» сигналов, в частности, функций регулирования, так и логических функций, в нем неудобным и неочевидным образом реализуются те участки программы, которые было бы удобно представить в виде конечного автомата.
Рис.2. Функциональная схема FBD.
Язык SFC
Язык последовательных функциональных схем SFC (Sequential Function Chart), использующийся совместно с другими языками (обычно с ST и IL), является графическим языком, в котором программа описывается в виде схематической последовательности шагов, объединенных переходами. Язык SFC построен по принципу, близкому к концепции конечного автомата, что делает его одним из самых мощных языков программирования стандарта IEC 61131-3. Пример программы на языке SFC приведен на рис. 3.
Наиболее простым и естественным образом на языке SFC описываются технологические процессы, состоящие из последовательно выполняемых шагов, с возможностью описания нескольких параллельно выполняющихся процессов, для чего в языке имеются специальные символы разветвления и слияния потоков (дивергенции и конвергенции, в терминах стандарта IEC 61131-3).
Шаги последовательности располагаются вертикально сверху вниз. На каждом шаге выполняется определенный перечень действий (операций). При этом для описания самой операции используются другие языки программирования, такие как IL или ST.
Действия (операции) в шагах имеют специальные классификаторы, определяющие способ их выполнения внутри шага: циклическое выполнение, однократное выполнение, однократное выполнение при входе в шаг и т.д. В сумме таких классификаторов насчитывается девять, причем среди них есть, например, классификаторы так называемых сохраняемых и отложенных действий, заставляющие действие выполняться даже после выхода программы из шага.
После того, как шаг выполнен, управление передается следующему за ним шагу. Переход между шагами может быть условным и безусловным. Условный переход требует выполнение определенного логического условия для передачи управления на следующий шаг; пока это условие не выполнено программа будет оставаться внутри текущего шага, даже если все операции внутри шага уже выполнены. Безусловный переход происходит всегда после полного выполнения всех операций на данном шаге. С помощью переходов можно осуществлять разделение и слияние ветвей последовательности, организовать параллельную обработку нескольких ветвей или заставить одну выполненную ветвь ждать завершения другой.
Как и любому другому языку, SFC свойственны некоторые недостатки. Хотя SFC может быть использован для моделирования конечных автоматов, его программная модель не совсем удобна для этого. Это связано с тем, что текущее состояние программы определяется не переменной состояния, а набором флагов активности каждого шага, в связи с чем при недостаточном контроле со стороны программиста могут оказаться одновременно активными несколько шагов, не находящихся в параллельных потоках.
Еще одно неудобство языка связано с тем, что шаги графически располагаются сверху вниз, и переход, идущий в обратном направлении, изображается в неявной форме, в виде стрелки с номером состояния, в которое осуществляется переход.
Рис. 3. Язык последовательных функциональных схем SFC.
Язык ST
Язык ST (Structured Text, Структурированный Текст) представляет собой язык высокого уровня, имеющий черты языков Pascal и Basic. Данный язык имеет те же недостатки, что и IL, однако они выражены в меньшей степени. Пример программы на языке ST приведен на рис. 4.
С помощью ST можно легко реализовывать арифметические и логические операции (в том числе, побитовые), безусловные и условные переходы, циклические вычисления; возможно использование как библиотечных, так и пользовательских функций. Язык также интерпретирует более 16 типов данных.
Язык ST может быть освоен технологом за короткий срок, однако текстовая форма представления программ служит сдерживающим фактором при разработке сложных систем, так как не дает наглядного представления ни о структуре программы, ни о происходящих в ней процессах.
Рис. 4. Язык структурированного текста ST.
Язык IL
Язык IL (Instruction List, Список Команд) представляет собой ассемблероподобный язык, достаточно несложный по замыслу авторов стандарта, для его практического применения в задачах промышленной автоматизации пользователем, не имеющим, с одной стороны, профессиональной подготовки в области программирования, с другой стороны, являющимся специалистом в той или иной области производства. Однако, как показывает практика, такой подход себя не оправдывает.
Ввиду своей ненаглядности, IL практически не используется для программирования комплексных алгоритмов автоматизированного управления, но часто применяется для кодирования отдельных функциональных блоков, из которых впоследствии складываются схемы FBD или CFC. При этом IL позволяет достичь высокой оптимальности кода: программные блоки, написанные на IL, имеют высокую скорость исполнения и наименее требовательны к ресурсам контроллера.
Язык IL имеет все недостатки, которые присущи другим низкоуровневым языкам программирования: сложность и высокую трудоемкость программирования, трудность модификации написанных на нем программ, малую степень «видимого» соответствия исходного текста программы и решаемой задачи.
Пример программы на языке IL приведен на рис. 5.
Рис. 5. Язык инструкций IL.
Многие производители инструментальных средств, опирающиеся на стандарт IEC, не ограничиваются поддержкой рассмотренных выше пяти языков стандарта. Можно выделить, как минимум, еще один язык визуального программирования, который довольно популярен среди разработчиков.
Язык CFC
Язык CFC (Continuous Flow Chart) – еще один высокоуровневый язык визуального программирования. По сути, CFC – это дальнейшее развития языка FBD. Этот язык был специально создан для проектирования систем управления непрерывными технологическими процессами.
Проектирование сводится к выбору из библиотек готовых функциональных блоков, их позиционированию на экране, установке соединений между их входами и выходами, а также настройке параметров выбранных блоков. В отличие от FBD, функциональные блоки языка CFC выполняют не только простые математические операции, а ориентированы на управление целыми технологическими единицами. Так в типовой библиотеке CFC блоков находятся комплексные функциональные блоки, реализующие управление клапанами, моторами, насосами; блоки, генерирующие аварийные сигнализации; блоки PID-регулирования и т.д. Вместе с тем доступны и стандартные блоки FBD. Унаследовав от FBD саму концепцию программирования, язык CFC в наибольшей степени ориентирован на сам технологический процесс, позволяя разработчику абстрагироваться от сложного математического аппарата.
Рис. 6. Среда проектирования на языке CFC системы Simatic PCS7.
CFC прост в освоении, и при этом позволяет разрабатывать сложнейшие алгоритмы автоматизированного управления без каких-либо специфических знаний других языков программирования.
Наши услуги
- Модернизация и реконструкция БСУ
- Автоматизация складов цемента
- Производство весовых дозаторов
- Перевод дозаторов на тензометрическую систему взвешивания (без остановки производства)
- Разработка и создание автоматизированных систем управления заводами по производству бетона, асфальта, сухих строительных смесей
- Диспетчеризация инженерных обьектов
- Пуско-наладочные работы и адаптация систем управления БСУ импортного производства
- Разработка программного обеспечения верхнего и нижнего уровня АСУ ТП
- Информация
- Новости
- Чем мы занимаемся
- Документы
- Глоссарий
Источник: www.promserv.ru
Plc программа что это
![]()
- О Школе Fine Start
- Профессии
- Блог и Медиа
![]()
Программируемые логические контроллеры (ПЛК)
к.т.н., эксперт по автоматизации производства,
Школа Fine Start
В данной статье рассмотрим
п рограммируемые логические контроллеры (ПЛК) .
Популярность контроллеров легко объяснима.
Их применение значительно упрощает создание и эксплуатацию как сложных автоматизированных систем, так и отдельных устройств, в том числе — бытового назначения.
Итак, начнём!

Программируемые логические контроллеры (ПЛК) — это унифицированная цифровая управляющая электронная система, специально разработанная для использования в производственных условиях.
ПЛК постоянно контролирует состояние устройств ввода и принимает решения на основе пользовательской программы для управления состоянием выходных устройств.
Программируемые логические контроллеры (ПЛК) широко применяются в сфере промышленной автоматизации разнообразных технологических процессов на больших и малых предприятиях.
ПЛК позволяет сократить этап разработки, упрощает процесс монтажа и отладки за счет стандартизации отдельных аппаратных и программных компонентов, а также обеспечивает повышенную надежность в процессе эксплуатации, удобный ремонт и модернизацию при необходимости.
Принято считать, что задача создания прообраза современного ПЛК возникла в конце 60-х годов прошлого столетия. В частности, в 1968 году она была сформулирована руководящими специалистами General Motors. Тогда эта компания пыталась найти замену для сложной релейной системы управления.
Согласно полученному заданию на проектирование, новая система управления должна была отвечать таким критериям как:
- простое и удобное создание технологических программ;
- возможность изменения рабочей управляющей программы без вмешательства в саму систему;
- простое и недорогое обслуживание;
- повышенная надежность при сниженной стоимости, в сравнении с подобными релейными системами.
Последующие разработки в General Motors, Allen-Bradley и других компаниях привели к созданию системы управления на базе микроконтроллеров, которая анализировала входные сигналы от технологических датчиков и управляла электроприводами исполнительных устройств.
Термин ПЛК (Programmable Logic Controller, PLC) впоследствии был определен в стандартах EN 61131 (МЭК 61131).
Упрощенное представление состава и принципа действия ПЛК хорошо демонстрирует Рис. 1.
Из него видно, что ПЛК имеет три основные секции:
- входную;
- выходную;
- центральную.
Имеется еще источник питания. Возможно подключение к ПЛК внешнего ПК для программирования и отладки.
![]()
Центральная секция содержит центральный процессор (ЦП), память и систему коммуникаций. Она выполняет обработку данных, принимаемых от входной секции данных, и передает результаты обработки в выходную секцию.
Следует сразу отметить, что в больших ПЛК, кроме ЦП, действующего в режиме «ведущий», могут быть дополнительные «ведомые» ПЛК со своими ЦП.
В качестве ЦП небольшого ПЛК используются стандартные микропроцессоры (МП). Обычно 8- и 16-разрядные МП вполне справляются со всеми стандартными задачами. Но, как отмечено в МЭК 61131, выбор конкретного МП все же зависит от задач, возлагаемых на данный тип ПЛК.
Для передачи данных другому ПЛК или для подключения к сетям передачи данных PROFIBUS, Industrial Ethernet, AS-Interface и др. в распределенных системах управления сегодня используются коммуникационные процессоры, такие как DP83867IR (Ethernet) производства Texas Instruments.
Входная секция ПЛК обеспечивает ввод в центральную секцию состояния переключателей, датчиков и смарт-устройств. Через выходную секцию ЦП управляет внешними исполнительными устройствами, среди которых могут быть электромагнитные пускатели моторов, источники света, клапаны и смарт-устройства.
Таким образом, ПЛК — это особым образом спроектированная цифровая система управления на основе процессоров разной мощности и с различной функциональной оснащенностью, в зависимости от предназначения.
Такую систему можно также считать специализированным мини-компьютером. Причем она изначально ориентирована на эксплуатацию в цехах промышленных предприятий, где имеется множество источников электромагнитных помех, а температура может быть, как положительной, так и отрицательной.
Источник: finestart.school
Почему современные ПЛК так сложно программировать любителю? Зачем существуют все эти специфические среды и языки программирования? Почему не используется веб-интерфейс для настройки автоматизации просто кликами мышки за 5 минут? Оставить комментарий

ПЛК (программируемый логический контроллер) — это устройство, служащее для решения задач по автоматизации технологических процессов. Основные блоки, имеющиеся у каждого ПЛК, — модуль центрального процессора (CPU) и модули ввода/вывода. Все остальное уже по желанию: коммуникационные процессоры, функциональные модули, интерфейсные модули и так далее.

Важное условие работы ПЛК — работа в реальном времени, это значит, что реакция системы должна быть строго оговорена. А дальше ПЛК делятся по исполнению: моноблочный, с дополнительными модулями, с удаленными модулями ввода/вывода, совмещенные с панелью оператора и другие. И главное отличие контроллеров между собой — это мощность CPU и количество памяти.
Программирование ПЛК происходит с помощью специальных IDE-программ. Программа пишется на одном из пяти языков программирования:
- LD (Ladder Diagram) — язык релейных схем — самый распространённый язык для ПЛК.
- FBD (Function Block Diagram) — язык функциональных блоков.
- SFC (Sequential Function Chart) — язык диаграмм состояний.
- IL (Instruction List) — ассемблероподобный язык.
- ST (Structured Text) — паскалеподобный язык.
Первые три графические, последние два текстовые. Графическое представление облегчает понятие логики программы, в то время как текстовый язык позволяет добиться большей гибкости.
К главным недостаткам графических языков программирования ПЛК можно отнести неэффективность при обработке процессов с большим количеством аналоговых переменных, так как графические языки больше подходят для представления дискретных сигналов.
Недостатки текстовых языков — отсутствие наглядности и требование более высокой квалификации программиста.
Узнать больше
Для каждой задачи удобно использовать свой язык. Например, принцип построения программы на SFC близок к образу конечного автомата. Технологические процессы в этом языке построены по типу определенных шагов. Структура шагов состоит из вертикали, которая идет сверху вниз. Каждый шаг — это конкретные операции. Как только шаг выполнен, действие переходит к следующему шагу.
Переход между шагами может быть двух видов: условным и безусловным. Если на шаге выполнено какое-то условие и в зависимости от этого условия происходит переход к определенному шагу, то это условный переход. Если же происходит выполнение всех условий на данном шаге и только потом осуществляется переход на следующий шаг, это безусловный переход.
Написание простой программы для ПЛК не представляет сложности для человека, знакомого с элементарной логикой. В то же время для написания сложной программы требуется знание основ программирования и специальные знания в области ПЛК.
Например, в программе часто необходим прием аналоговых сигналов, преобразование аналогового сигнала в инженерные величины: значение давления датчик выдает в виде токового сигнала 4…20 мА, и для представления в программе нужно выполнение преобразований. Общение по сетевому интерфейсу, например Modbus, требует знания специфики этого протокола. Для настройки ПИД-регулятора нужны знания технологического процесса. Прием и обработка сигналов с инкрементального датчика требуют выполнения расчетов в программе.
На каждом объекте используется своя логика программы. Невозможно сделать универсальную программу, которая бы на 100% выполняла все задания. Поэтому программа для ПЛК пишется под конкретную задачу.
Производители контроллеров предпринимали попытки снизить порог вхождения в программирование ПЛК, но это все приводило к ухудшению качества программ, ее универсальности и невозможности реализации всех задумок.

Таким образом, альтернативы классическим языкам программирования ПЛК и специализированных IDE разработчика на данном этапе развития промышленной электроники не существует. Но шаги в этом направлении ведутся, и, возможно, лет через 10–15 промышленные ПЛК будут программироваться через встроенный в них веб-браузер с любого устройства и предоставлять обширный инструментарий, схожий с существующими IDE.
Вам также будет интересно:
- Для чего нужен и почему используется именно RS-232 в ПЛК? Это же древний интерфейс!
- Для чего нужен и почему используется именно RS-485 в ПЛК? Это же древний интерфейс!
- Что такое термосопротивление в применении ПЛК?
- Что такое термопара в применении ПЛК?
- Что такое резистивные датчики в применении ПЛК?
- Что такое AO (аналоговый выход) в ПЛК. Для чего он нужен?
- Что такое AI (аналоговый вход) в ПЛК. Для чего он нужен?
- Что такое DI (дискретный вход) в ПЛК. Для чего он нужен?
Источник: plcontroller.ru