OSI расшифровывается как Open System Interconnection — эталонная модель, которая описывает, как информация из программного приложения на одном компьютере перемещается через физический носитель к программному приложению на другом компьютере.
OSI состоит из семи уровней, и каждый уровень выполняет определенную сетевую функцию.
Модель OSI была разработана Международной организацией по стандартизации (ISO) в 1984 году, и теперь она рассматривается как архитектурная модель для межкомпьютерных коммуникаций.
Модель OSI делит всю задачу на семь небольших и управляемых задач. Каждому слою назначается определенная задача.
Каждый уровень является автономным, поэтому задача, назначенная каждому уровню, может выполняться независимо.
Характеристики модели OSI:
· Модель OSI разделена на два уровня: верхние и нижние уровни.
· Верхний уровень модели OSI в основном связан с проблемами приложений, и они реализованы только в программном обеспечении. Уровень приложений наиболее близок к конечному пользователю. И конечный пользователь, и прикладной уровень взаимодействуют с программными приложениями. Верхний слой относится к слою чуть выше другого слоя.
Про модель OSI и стек TCP/IP простыми словами. Как оно работает?
· Нижний уровень модели OSI занимается проблемами передачи данных. Канальный уровень и физический уровень реализованы в аппаратном и программном обеспечении. Физический уровень является самым низким уровнем модели OSI и наиболее близок к физической среде. Физический уровень в основном отвечает за размещение информации на физическом носителе.
Функции уровней OSI
Есть семь уровней OSI. Каждый слой имеет разные функции. Список из семи слоев приведен ниже:
1. Физический слой, Уровень приложений, так же называют прикладной
2. Уровень представления
3. Сессионный слой
4. Транспортный уровень
5. Сетевой уровень
6. Канал данных, так же называют канальным
7. Физический слой,
Физический слой
Основная функциональность физического уровня заключается в передаче отдельных битов от одного узла к другому узлу.
Это самый низкий уровень модели OSI.
· Он устанавливает, поддерживает и деактивирует физическую связь.
Он определяет механические, электрические и процедурные характеристики сетевого интерфейса.
Функции физического уровня:
· Конфигурация линии: определяет способ физического соединения двух или более устройств.
· Передача данных : определяет режим передачи между двумя устройствами в сети: симплексный, полудуплексный или полудуплексный.
· Топология : определяет способ организации сетевых устройств.
· Сигналы: определяет тип сигнала, используемого для передачи информации.
Канальный
1. Этот слой отвечает за безошибочную передачу кадров данных. Он определяет формат данных в сети, обеспечивает надежную и эффективную связь между двумя или более устройствами, отвечает за уникальную идентификацию каждого устройства, которое находится в локальной сети.
Модель OSI | 7 уровней за 7 минут
Уровень содержит содержит два подслоя:
1) Уровень управления логической связью:
Отвечает за передачу пакетов на сетевой уровень принимающего получателя.
Так же идентифицирует адрес протокола сетевого уровня из заголовка.
Это также обеспечивает управление потоком.
2) Уровень контроля доступа к медиа:
Уровень управления доступом к среде является связующим звеном между уровнем управления логическим каналом и физическим уровнем сети.
Он используется для передачи пакетов по сети.
Функции канального уровня
Сетевой уровень.
Это уровень 3, который управляет адресацией устройств, отслеживает расположение устройств в сети.
Он определяет наилучший путь для перемещения данных из источника в место назначения в зависимости от состояния сети, приоритета обслуживания и других факторов.
Канальный уровень передачи данных отвечает за маршрутизацию и пересылку пакетов.
Маршрутизаторы — это устройства уровня 3, они указаны на этом уровне и используются для предоставления услуг маршрутизации в пределах межсетевого взаимодействия.
Протоколы, используемые для маршрутизации сетевого трафика, называются протоколами сетевого уровня. Примерами протоколов являются IPV4 и Ipv6.
Функции сетевого уровня:
- Межсетевое взаимодействие : межсетевое взаимодействие является основной обязанностью сетевого уровня. Это обеспечивает логическую связь между различными устройствами.
- Адресация : Сетевой уровень добавляет адрес источника и назначения в заголовок кадра. Адресация используется для идентификации устройства в интернете.
- Маршрутизация . Маршрутизация является основным компонентом сетевого уровня и определяет оптимальный оптимальный путь из нескольких путей от источника к месту назначения.
- Пакетирование : сетевой уровень получает пакеты от верхнего уровня и преобразует их в пакеты. Этот процесс известен как Пакетирование. Это достигается с помощью интернет-протокола (IP).
Транспортный уровень
Транспортный уровень — это Уровень 4, гарантирующий, что сообщения передаются в том порядке, в котором они были отправлены, и нет дублирования данных.
Основная ответственность транспортного уровня заключается в полной передаче данных.
Он получает данные из верхнего уровня и преобразует их в меньшие единицы, известные как сегменты.
Этот уровень можно назвать сквозным уровнем, поскольку он обеспечивает двухточечное соединение между источником и пунктом назначения для надежной доставки данных.
Два протокола, используемые на этом уровне:
- Протокол управления передачей
Это стандартный протокол, который позволяет системам общаться через Интернет.
Он устанавливает и поддерживает связь между хостами.
Когда данные отправляются через соединение TCP, тогда протокол TCP делит данные на более мелкие единицы, известные как сегменты. Каждый сегмент проходит через Интернет, используя несколько маршрутов, и они прибывают в пункт назначения в разных порядках. Протокол управления передачей переупорядочивает пакеты в правильном порядке на принимающей стороне. - Протокол пользовательских датаграмм
Протокол пользовательских дейтаграмм — это протокол транспортного уровня.
Это ненадежный транспортный протокол, так как в этом случае получатель не отправляет подтверждение при получении пакета, отправитель не ожидает подтверждения. Следовательно, это делает протокол ненадежным.
Функции транспортного уровня:
- Адресация точки обслуживания : компьютеры запускают несколько программ одновременно, по этой причине происходит передача данных из источника в место назначения не только с одного компьютера на другой компьютер, но и от одного процесса к другому процессу. Транспортный уровень добавляет заголовок, который содержит адрес, известный как адрес точки обслуживания или адрес порта. Ответственность сетевого уровня заключается в передаче данных с одного компьютера на другой компьютер, а ответственность транспортного уровня — в передаче сообщения правильному процессу.
- Сегментация и повторная сборка : когда транспортный уровень получает сообщение от верхнего уровня, он разделяет сообщение на несколько сегментов, и каждому сегменту присваивается порядковый номер, который уникально идентифицирует каждый сегмент. Когда сообщение прибыло в пункт назначения, тогда транспортный уровень повторно собирает сообщение на основе их порядковых номеров.
- Управление соединением : Транспортный уровень предоставляет две службы: служба, ориентированная на соединение, и служба без соединения.
- Служба без установления соединения обрабатывает каждый сегмент как отдельный пакет, и все они перемещаются по разным маршрутам, чтобы достичь пункта назначения.
- Служба, ориентированная на установление соединения, устанавливает соединение с транспортным уровнем на машине назначения — до доставки пакетов. В сервисе, ориентированном на соединение, все пакеты передаются по одному маршруту.
Сессионный слой
Это уровень 3 в модели OSI.
Сеансовый уровень используется для установления, поддержания и синхронизации взаимодействия между устройствами связи.
Функции сессионного слоя :
- Диалоговое управление : Сеансовый уровень действует как диалоговый контроллер, который создает диалог между двумя процессами, или мы можем сказать, что он обеспечивает связь между двумя процессами, которые могут быть либо полудуплексными, либо полнодуплексными.
- Синхронизация : Сеансовый уровень добавляет некоторые контрольные точки при передаче данных в последовательности. Если во время передачи данных произойдет какая-либо ошибка, то передача будет повторяться с контрольной точки. Этот процесс известен как Синхронизация и восстановление.
Уровень представления
Уровень представления в основном касается синтаксиса и семантики информации, которой обмениваются две системы.
Он действует как переводчик данных для сети.
Этот слой является частью операционной системы, которая преобразует данные из одного формата представления в другой формат.
Уровень представления также известен как уровень синтаксиса.
Функции презентационного слоя :
- Перевод: процессы в двух системах обмениваются информацией в виде символьных строк, чисел и так далее. Разные компьютеры используют разные методы кодирования, уровень представления управляет взаимодействием между различными методами кодирования. Он преобразует данные из зависимого от отправителя формата в общий формат и изменяет общий формат в зависимый от получателя формат на принимающей стороне.
- Шифрование. Шифрование необходимо для обеспечения конфиденциальности. Шифрование — это процесс преобразования передаваемой отправителем информации в другую форму и отправки полученного сообщения по сети.
- Сжатие — это процесс сжатия данных, т.е. Сокращение числа передаваемых битов. Сжатие данных очень важно в мультимедиа, таких как текст, аудио, видео.
Уровень приложений
Прикладной уровень служит окном для пользователей и процессов приложений для доступа к сетевому сервису.
Он решает такие вопросы, как прозрачность сети, распределение ресурсов и т. Д.
Прикладной уровень не является приложением, но он выполняет функции прикладного уровня.
Этот уровень предоставляет сетевые услуги конечным пользователям.
Функции прикладного уровня :
- Передача, доступ и управление файлами (FTAM): прикладной уровень позволяет пользователю получать доступ к файлам на удаленном компьютере, извлекать файлы с компьютера и управлять файлами на удаленном компьютере.
- Почтовые службы: прикладной уровень предоставляет средства для пересылки и хранения электронной почты.
- Службы каталогов: приложение предоставляет источники распределенной базы данных и используется для предоставления этой глобальной информации о различных объектах.
Источник: dzen.ru
Cетевая модель OSI
Cетевая модель OSI (Open Systems Interconnection model) – это эталонная модель взаимодействия открытых систем. Массово не используется, но благодаря ей можно понять, как работает аппаратная и программная части сети. На практике OSI применяют для упрощенного представления открытых систем (Ethernet, IP и т. д.). Сисадминам, сетевым инженерам кроме нее следует изучить модель TCP/IP.
Общие особенности сетевой модели
У сетевой модели OSI всего 7 уровней, расположенных в иерархическом порядке. Верхний седьмой уровень – прикладной, а нижний первый – физический. Сетевая модель была разработана ещё в 1975 году для описания архитектуры и работы сетей, передающих данные. В процессе отправки информации всегда участвует 3 элемента:
- отправитель;
- получатель;
- отправляемые и получаемые данные.
Так видит отправку файлов по беспроводным и проводным сетям обычный пользователь. Процедуру отправки и получения данных детально описывает OSI. На первом уровне информация представлена в виде бит. На седьмом она становится данными. Когда информация из бит переходит в данные происходит декапсуляция.
Обратное преобразование с седьмого на первый уровень называется инкапсуляцией.
Информация на каждом уровне представляется своими протоколами. Любой файл при отправке по сети проходит процесс инкапсуляции и декапсуляции. Рассмотрим более подробно уровни представления модели OSI.
1 уровень – физический (L1)
На первом уровне передается сигнал и ток от оборудования отправителя к получателю. Информация отправляется в виде нулей и единиц. На каждом уровне есть свой блок данных протокола (PDU). На первом уровне PDU – это бит. Биты передаются по оптоволокну или по беспроводной сети.
К протоколам физического уровня относятся Bluetooth, Wi-Fi, TIA-449, ITU, GSM и т. д. RJ-45, RJ-11 тоже формально относятся к L1. В виде данных обработка информации начинается только на высоких уровнях модели (с 5 по 7).
2 уровень – канальный (L2)
К сети кроме отправителя и получателя практически всегда подключены другие устройства. Второй уровень отвечает за процедуру адресации, т. е. передачу информации нужному пользователю. При поступлении на L2 биты конвертируются в кадры. В результате процедуры преобразования получаются фреймы с адресом отправителя и получателя. Готовые кадры отправляются далее.
MAC и LLC – два подуровня L2. На MAC-подуровне происходит присвоение MAC-адресов пользовательским устройствам. LLC проверяет правильность передаваемой информации и автоматически если исправляет при наличии нарушений. На этом уровне работают мосты, коммутаторы и другая аппаратура.
На рынке до сих пор встречаются коммутаторы второго уровня. Они работают с MAC-адресами и не способны обрабатывать IP-адреса. Для обеспечения маршрутизации внутри виртуальных локальных сетей потребуется коммутатор третьего уровня. Их также называют многослойными. Кроме работы с MAC такие устройства могут распознавать IP-адреса и проводить тегирование ЛВС.
3 уровень – сетевой (L3)
На этом этапе определяется путь передачи данных и вводится новое понятие маршрутизации. На L3 используется 2 типа протоколов: с установкой и без установки соединения. Первый тип протоколов отправляет данные, содержащие полную информацию об отправителе и получателе. Это нужно для того, чтобы сетевые устройства получили полные адресные сведения и правильно определили путь для маршрутизации данных. Пакет будет передаваться от одного маршрутизатора (роутера) к другому, пока не попадет получателю.
Но у протоколов, работающих без установки соединения, есть один существенный минус – не соблюдение порядка передачи данных. Пользователь получит сообщения от отправителя не так, как он их отправлял, потому что разные пакеты могут быть отправлены разными маршрутами. В этом случае, прежде чем информация попадет к пользователю, она обрабатывается на L4 транспортными протоколами.
При использовании протоколов с установкой соединения данные поступают пользователю в том порядке, в котором они были отправлены. Но при их использовании сам процесс отправки информации занимает больше времени. Активнее всего на L3 используется протокол ARP для определения MAC-адреса по IP. Он также осуществляет обратное преобразование уникального идентификатора сетевого оборудования в IP.
L1, L2, L3 относятся к уровням среды. Они отвечают за перемещение данных по беспроводным сетям, кабелям, сетевому оборудованию. Более высокие уровни (с L4 по L7) называют уровнями хоста. Они взаимодействуют с пользовательскими устройствами (ПК, смартфонами, планшетами) и отвечают за представление данных.
4 уровень – транспортный (L4)
Отправка данных от отправителя к получателю регулируется отдельно. За этот процесс отвечает транспортный уровень. При передаче информации всегда теряется часть данных. Но для некоторых видов файлов (аудио, видео, фотографии) малые потери не критичны. Для передачи таких данных применяется протокол UDP.
Он обеспечивает отправку пакетов без установки соединения.
При использовании UDP файл делится на датаграммы. Она содержит заголовки, которые необходимы для доставки до получателя. По этой причине датаграммы могут направляться пользователю разными маршрутами и в произвольном порядке. Если датаграмма потеряется, в файле появляется битые данные.
Если же пользователь отправляет файлы, чувствительные к потерям данных, применяется TCP. Он проверяет целостность передаваемой информации. При его использовании файл сегментируется. Но это происходит не всегда, а только с теми пакетами данных, размер которых превышает пропускную способность сетей. Сегментация также требуется, когда происходит отправка файлов по нестабильным сетям.
В повседневной работе инженеры взаимодействуют только с первыми четырьмя уровнями. Знать их особенности нужно для проектирования сетей и настройки оборудования. С остальными уровнями взаимодействуют разработчики ПО.
5 уровень – сеансовый (L5)
Этот уровень модели OSI относится к «верхним». Здесь осуществляются операции с чистыми данными. Отвечает пятый уровень за поддержку связи во время сеанса или сессии. Он обеспечивает правильное взаимодействие между приложениями, позволяет синхронизировать разные задачи, обмениваться данными. Благодаря L5 происходит поддержка и завершение сеанса.
Сеанс состоит из запросов и ответов, направляемых между разными приложениями. Сеансовый уровень используется в ПО, удаленно вызывающих процедуры. Примером работы L5 служит видеовызов в Skype или прямой эфир на широкую аудиторию. Во время сеанса нужно обеспечить синхронизованную передачу аудио и видео всем участникам конференции. За это и отвечают протоколы пятого уровня.
6 уровень – представления данных (L6)
Протоколы L6 осуществляют кодирование и декодирование информации. Информация, передаваемая по сети, на этом уровне не меняет своего содержания. Кроме перевода данных из одного формата в другой, L6 осуществляет и другие функции:
- сжатие информации для увеличения пропускной способности канала;
- шифрование данных для защиты от злоумышленников;
- отправка запросов на прекращение сеанса связи.
Преобразование данных осуществляется автоматически и не требует от пользователя подтверждения. При получении данных с L5 автоматически устанавливаются стандартные форматы файлов.
7 уровень – прикладной (L7)
Другое название L7 – уровень приложений. Он отвечает за взаимодействие пользовательских приложений с работающей сетью. Этот уровень обеспечивает использование программами сетевых служб, отправку e-mail, обмен данными через торренты, предоставление ПО информации о сбоях и т. д. К протоколам прикладного уровня относят:
В случае с HTTPS его принадлежность к L7 или L6 определяется способом использования. Если пользователь занимается веб-серфингом, то протокол относят к прикладному уровню. Если же осуществляется передача финансовых данных, то низкоуровневый HTTPS рассматривают как L6.
Седьмой уровень отвечает за представление данных в понятном пользователю виде. На этом этапе не происходит доставка или маршрутизация информации. Протоколы просто преобразуют данные для визуализации. Кроме преобразования данных они также обеспечивают доступ к удаленным БД, пересылают служебную информацию.
Недостатки OSI
Семиуровневая модель OSI считается устаревшей. На момент выхода она уже не поддерживала все актуальные стандарты, а сейчас эта проблема стала более выраженной. Поэтому современные компании ориентируются на TCP/IP. Еще один недостаток модели – плохо проработанная технология. Протоколы OSI дублируют друг друга, распределение функций немного странное.
При построении сети используются не все уровни модели ОСИ. Обычно для настройки оборудования инженерам нужно знать первые 4 уровня. L5 и L6 при работе с реальными сетями практически не применяются.
Модель ISO/OSI является закрытой. Её в основном использовали телекоммуникационные компании Франции, США, Англии. В тоже время стек протоколов TCP/IP разрабатывался как открытая модель, что и привлекло внимание разработчиков по всему миру.
Разница OSI и TCP/IP
Некоторые инженеры ошибочно предполагают, что модель OSI/ISO – это расширенная версия TCP/IP, но на самом деле такой подход не совсем верный. У этих моделей разное распределение межуровневых функций. В TCP/IP всего 4 уровня. На канальном уровне обмен данными осуществляется при помощи битов и кадров, а на сетевом с помощью пакетов. На транспортном уровне передаются сегменты и датаграммы.
А на прикладном уровне происходит передача данных.
Прикладной уровень TCP/IP объединяет функции 3 уровней ОСИ: сеансового, представления данных и прикладного. Уровень доступа сетевой модели передачи цифровых данных охватывает физические и канальный уровни OSI. Сами службы тоже работают немного иначе. В TCP/IP со службами последовательности и подтверждения работает транспортный уровень. В OSI за это отвечает канальный уровень.
Считается, что при использовании TCP/IP инженер быстрее найдет неполадки в сети, т. к. диагностику проводят с самого нижнего уровня. Простейший пример поиска проблем на первом уровне – проверка целостности кабелей и их подключения к сетевой карте ПК.
Заключение
Уровни OSI модели позволяют получить общее представление об особенностях передачи данных в сетях. Рассмотренная архитектура является упрощенной. Полная модель ОСИ включает дополнительные уровни: пользовательский, сервисный и т. д. Но для диагностики сетей чаще всего применяется именно упрощенный вариант OSI.
Популярные услуги
Аренда хостинга для сайта
Хостинг сайтов в СПб приходится приобретать любой уважающей себя компании. Это нужно для создания и дальнейшей раскрутки сайта. В компании Xelent клиентам на выбор доступна аренда виртуального или vps-сервера.
Виртуальная инфраструктура IaaS
IaaS – решение, которое позволяет отказаться от использования физического оборудования и значительно сократить расходы компании.
Публичное облако
Публичное облако позволяет быстро расширить ИТ-инфраструктуру без значительных вложений в модернизацию оборудования.
Источник: www.xelent.ru
Это база. Сетевая модель OSI. Истоки
Ни один курс по сетевым технологиям не обходится без модели Open Systems Interconnection или попросту OSI. Как говорится, «это баааза», на принципах которой создавались другие современные модели. Хотя сегодня она не особо применяется на практике, это не значит, что сетевым специалистам не нужно понимать ее принципы.
История модели OSI задокументирована не полностью, но нам известны имена людей и названия организаций, вовлеченных в ее создание. Поэтому в этой статье были собраны известные факты об OSI на основе материалов из Интернета, например, онлайн-книги Джеймса Пелки «History And Development Of The Osi Model» и данных из интервью 1 и интервью 2 с Чарльзом Бакманом. Также на Habr я наткнулась на перевод статьи «OSI: Интернет, которого не было», где представлена история о моделях OSI и TCP/IP. Однако я решила самостоятельно изучить истоки OSI и больше углубится в этот период. Если вам интересно понять, что же тогда происходило, то приступим.
Ключевые герои в истории OSI
Начнем с главных героев этой истории. Honeywell Information System – американская корпорация, производящая электронные системы управления и автоматизации. Именно здесь была собрана группа ученых, работающая над созданием семиуровневой модели.
Майк Канепа (Mike Canepa) и Чарльз Бакман (Charles Bachman) – ученые и главы группы разработки модели OSI в компании Honeywell Information System. К сожалению, о Майке Канепа известно мало, но он часто упоминается в этой истории. А вот Чарльз Бакман является известным специалистом, интервью которого позволяют понять, что происходило в период разработки OSI. Он был пионером в области управления компьютерными системами и разработки баз данных. В группе создания OSI Чарльз также являлся главным техническим специалистом.
Юбер Циммерманн (Hubert Zimmerman) – французский инженер-программист, специалист по компьютерным сетям и один из председателей группы ISO. Был одной из ключевых фигур, продвигающей идею эталонной модели OSI.
Следующая и важнейшая компания в этой истории – это Международная организация по стандартизации (ISO). Независимая неправительственная организация, которая занимается разработкой международных стандартов. Здесь также стоит упомянуть американское объединение ANSI, поддерживающее деятельность ISO.
История разработки модели OSI
История разработки OSI началась с небольшой группы ученых, во главе которой стояли Майк Канепа и Чарльз Бакман. В начале и середине 1970-х годов основное внимание группы было сосредоточено на проектировании и разработке прототипов систем для компании Honeywell Information System. А в середине 1970-х группа поняла, что для поддержки машин с базами данных распределенного доступа и их взаимодействия необходима более структурированная коммуникационная архитектура.
Ученые стали изучать некоторые из существующих тогда решений, в том числе и многоуровневую сетевую архитектуру IBM (SNA). Уже тогда они поняли, что будут конкурировать с ней, так как модель оказалась схожа с той, что разрабатывали в Honeywell. SNA (Systems Network Architecture) была создана IBM для определения общих соглашений связи и передачи данных между аппаратными и программными продуктами IBM. Она представляла собой иерархический подход к системам и имела архитектуру терминал-компьютер. В одном из своих интервью Чарльз Бакман отмечает, что у SNA были фундаментальные проблемы, связанные с ее иерархической системой, поэтому группа работала над собственной моделью.
Возвращаемся к истории. Результатом исследований и работы над проектированием собственного решения стала разработка в 1977 году многоуровневой архитектуры, известной как архитектура распределенных систем HDSA (Honeywell Distributed System Architecture). Этот проект создавался, чтобы предоставить виды протоколов «процессор-процессор» и «процессор-терминал», необходимые для взаимодействия произвольного количества машин и произвольного количества людей. Это должно было стать основой для создания системных приложений (Чарльз Бакман, интервью Джеймса Л.Пелки).
Создание комитета OSI
В 1977 году Британский институт стандартов предложил Международной организации по стандартизации (ISO) создать стандарты для открытого взаимодействия между устройствами. Новые стандарты должны были предложить альтернативу закрытым системам традиционных компьютеров, разработанных без возможности взаимодействия друг с другом.
В результате ISO сформировала комитет по взаимосвязи открытых систем (OSI). А американскому национальному институту стандартов (ANSI), входящему в ISO, было поручено разработать предложения для первого заседания комитета. Бакман принял участие во встречах ANSI и представил многоуровневую модель. Она была выбрана как единственное предложение, которое представили комитету ISO SC-16.
Вашингтон, округ Колумбия, март 1978 года
С 28 февраля по 2 марта 1978 года в Вашингтоне проходило собрание ISO, где команда Honeywell презентовала свое решение ISO. На встрече собралось множество делегатов из десяти стран и наблюдатели из 4 международных организаций. На этом совещании было достигнуто соглашение, что многоуровневая архитектура HDSA удовлетворяет большинству требований и что ее можно будет расширить позже.
Для дальнейшей работы над усовершенствованием модели было решено собрать рабочие группы. Их главной целью было составление общего международного архитектурного положения.
Модель, которую представили на собрании, состояла из шести слоев, куда изначально не входил нижний, физический уровень. И здесь вступает в игру Юбер Циммерманн, председатель OSI и глава архитектурной группы, который и предложил включить в модель физический уровень. Необходимо было узнать, как подавать импульсы на провода. Чарльз Бакман отмечает, что Юбер был одним из самых важных людей в этом комитете, с точки зрения его вклада в работу.
Принятие модели как стандарта
Ученые проводили собрания каждые шесть месяцев и укладывались в очень жесткие графики. В интервью Бакман вспоминает, что все ночи, в которые проходили встречи и велись работы, были долгими и поздними, группы стремились достичь главной цели и создать международное предложение по стандартизации.
Следующая встреча была в Париже. Перед ней группа ученых в 2 или 3 часа ночи обновляла и копировала текст документа (вспоминаются студенты перед сессией). Забавный факт: 6 или 7 человек группы Бакмана поместились, а точнее навалились друг на друга, в маленькую французскую машину Юбера Citroën 2CV (Deux Chevaux), чтобы успеть на собрание. Цель, которая двигала Бакмана и его коллег вперед – это возможность использовать модель на практике, познакомить всех с понятием многоуровневой архитектуры.
Бакман отмечает, что каждая встреча была важна, на всех из них добивались прогресса. Однако на каждом собрании всегда присутствовали новые люди, поэтому часть времени тратилась на то, чтобы вовлечь их в процесс.
Начиная с 1977 года, ISO провела программу по разработке общих стандартов и методов создания сетей, но аналогичный процесс появился в некоммерческой организации по стандартизации информационных и коммуникационных систем (ECMA) и Международном консультативном комитете по телеграфу и телефону (CCITT). Делегаты от этих групп присутствовали на собраниях ISO, и все они работали над одной целью. Позже CCITT приняла документы, которые почти идентичны документам ISO, и группа стала сотрудничать с ISO.
В 1983 году документы CCITT и ISO были объединены, чтобы сформировать Базовую эталонную модель взаимодействия открытых систем или просто модель OSI. Общий документ был опубликован в 1984 году как стандарт ISO 7498.
Теперь немного подробнее о самой модели OSI и ее принципах.
Сетевая модель OSI – «это баааза»
Как вы поняли из истории, это набор правил, который описывает процесс взаимодействия устройств по сети. OSI выступает первой стандартной моделью в области сетевых коммуникаций.
По модели процесс передачи данных по сети происходит постепенно от одного уровня к другому. На каждом из них используются информация с прошлого уровня и определенные протоколы. Главными героями здесь выступают устройства отправителя и получателя, а также сами передаваемые данные. И как раз процесс обмена информации между устройствами определяет модель OSI.
На физическом уровне информация предстает в виде битов, а на прикладном она отражается в более привычном для нас виде, в виде данных. Существует два процесса перехода от первого уровня к седьмому и наоборот. Первый – это инкапсуляция, когда данные отправляются с устройства и переводятся в биты. Второй – декапсуляция, обратный переход, когда биты трансформируются в данные.
Разбираемся, что конкретно делают уровни, и что же там происходит. Смотрим на модель снизу вверх.
Уровень 1: Физический
Начнем (кто бы удивился) с уровня 1. Здесь происходит обмен оптическими, электрическими или радиосигналами между устройствами отправителя и получателя.
На этом уровне железо не распознает данные в классическом для нас виде (картинки, текст, видео), но оно понимает биты (единицы и нули) и работает только с сигналами. Таким оборудованием выступают концентраторы, медиаконвертеры или репитеры. Здесь информация или биты передаются либо по проводам, кабелям, либо без них, например через Bluetooth, Wi-Fi.
Когда возникает проблема с сетью, многие специалисты сразу же обращаются к физическому уровню, чтобы проверить, например, не отключен ли сетевой кабель от устройства.