Описание математической модели программы

Модель — материальный объект, система математических зависимостей или программа, имитирующая структуру или функционирование исследуемого объекта.

Моделирование — представление различных характеристик поведения физической или абстрактной системы с помощью другой системы.

Математическое моделирование — метод исследования процессов и явлений на их математических моделях.

Изучение компьютерного математического моделирования открывает широкие возможности для осознания связи информатики с математикой и другими науками — естественными и социальными. Компьютерное математическое моделирование в разных своих проявлениях использует практически весь аппарат современной математики.

Математическое моделирование не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограничены и, как правило, эти методы гораздо сложнее численных. В компьютерном моделировании доминируют численные методы, реализуемые на компьютерах. Однако понятия «аналитическое решение» и «компьютерное решение» отнюдь не противостоят друг другу, так как:

Математическая модель задачи. Как составить. Математическая постановка. Исследование операций.

а) все чаще компьютеры при математическом моделировании используются не только для численных расчетов, но и для аналитических преобразований:

б) результат аналитического исследования математической модели часто выражен столь сложной формулой, что при взгляде на нее не складывается восприятия описываемого ей процесса. Эту формулу нужно представить графически, проиллюстрировать в динамике, иногда даже озвучить, т.е. проделать то, что называется «визуализацией абстракций». При этом компьютер — незаменимое техническое средство.

К классификации математических моделей можно подходить по-разному, положив в основу классификации различные принципы.

1) Классификация моделей по отраслям наук (математические модели в физике, биологии, социологии и т.д.);

2) Классификация моделей по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.);

3) Классификация моделей с точки зрения целей моделирования.

§ дескриптивные (описательные) модели;

Пример.

1) Моделируя движение кометы, вторгшейся в Солнечную систему, мы описываем (предсказываем) траекторию ее полета, расстояние, на котором она пройдет от Земли и т.д., т.е. ставим чисто описательные цели. У нас нет никаких возможностей повлиять на движение кометы, что-то изменить.

2) Меняя тепловой режим в зернохранилище, мы можем стремиться подобрать такой, чтобы достичь максимальной сохранности зерна, т.е. оптимизируем процесс.

Тихонов Н. А. — Основы математического моделирования — Типы математических моделей (Лекция 1)

Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле.

3) Игровые модели могут иметь отношение не только к детским играм (в том числе и компьютерным), но и к вещам весьма серьезным.

4) Бывает, что модель в большой мере подражает реальному процессу, т.е. имитирует его.

Имитационная модель — описание системы и ее поведения, которое может быть реализовано и исследовано в ходе операций на компьютере.

Имитационное моделирование — исследование поведения сложной системы на ее модели.

Можно сказать, что чаще всего имитационное моделирование применяется для того, чтобы описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и четко сформулировано. Математическое описание тогда сводится к уровню статистической обработки результатов моделирования при нахождении макроскопических характеристик системы. Такой компьютерный эксперимент фактически претендует на воспроизведение натурного эксперимента.

Читайте также:
Как называется программа для расшифровки

Имитационное моделирование позволяет осуществить проверку гипотез, исследовать влияние различных факторов и параметров.

Здесь мы рассмотрим процесс компьютерного математического моделирования, включающий численный эксперимент с моделью (рис. 6.1).

Рис. 6.1 — Общая схема процесса компьютерного математического моделирования

Первый этап — определение целей моделирования.

Основные из них таковы:

1) модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);

2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);

3) модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).

Выработка концепции управления объектом — другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был вполне безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным — на грани выполнимости — в системах биолого-экономических, социальных. Если относительно легко ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве, то несравненно труднее проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Составим список величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Обозначим первые (входные) величины через x1, х2. хn; вторые (выходные) через y1,y2. yk.

Символически поведение объекта или процесса можно представить в виде: yj = Fj(x1, х2. хn) (j =1,2. k),

где F — те действия, которые следует произвести над входными параметрами, чтобы получить результаты.

Входные параметры, могут быть известны «точно», т.е. поддаваться (в принципе) измерению однозначно и с любой степенью точности — тогда они являются детерминированными величинами. Так, в классической механике, сколь сложной ни была бы моделируемая система, входные параметры детерминированы — соответственно, детерминирован, однозначно развивается во времени процесс эволюции такой системы.

Однако в природе и обществе гораздо чаще встречаются процессы иного рода, когда значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры, являются вероятностными (стохастическими), и, соответственно, таким же является процесс эволюции системы (случайный процесс).

«Случайный» — не значит «непредсказуемый»; просто характер исследования, задаваемых вопросов резко меняется (они приобретают вид «С какой вероятностью. «, «С каким математическим ожиданием. «и т.п.). Примеров случайных процессов не счесть как в науке, так и в обыденной жизни (силы, действующие на летящий самолет в ветреную погоду, переход улицы при большом потоке транспорта и т.д.).

Для стохастической модели выходные параметры могут быть как величинами вероятностными, так и однозначно определяемыми.

Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием (разделением по рангам). Чаще всего невозможно (да и не нужно) учитывать все факторы, которые могут повлиять на значения интересующих нас величин у.

Читайте также:
Обучающие программы для детей на Андроид планшет

От того, насколько умело выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективность достижения цели. Выделить более важные (или, как говорят, значимые) факторы и отсеять менее важные может лишь специалист в той предметной области, к которой относится модель.

Отбрасывание (по крайней мере при первом подходе) менее значимых факторов огрубляет объект моделирования и способствует пониманию его главных свойств и закономерностей. Умело ранжированная модель должна быть адекватна исходному объекту или процессу в отношении целей моделирования. Обычно определить, адекватна ли модель, можно только в процессе экспериментов с ней, анализа результатов.

Следующий этап — поиск математического описания. На этом этапе необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстает перед нами в виде уравнения, системы уравнений, системы неравенств, дифференциального уравнения или системы таких уравнений и т.д.

Когда математическая модель сформулирована, выбирается метод ее исследования. Как правило, для решения одной и той же задачи есть несколько конкретных методов, различающихся эффективностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса.

Разработка алгоритма и составление программы для ЭВМ — это творческий и трудноформализуемый процесс. В настоящее время при компьютерном математическом моделировании часто используются приемы процедурно-ориентированного (структурного) программирования.

При создании имитационной модели можно также воспользоваться возможностями одного из пакетов математической поддержки (MATHEMATICA, MathCad, MathLab и др).

В настоящее время существуют проблемно-ориентированные имитационные языки, в которых объединяются различные альтернативные подходы, и которые самой своей структурой определяют возможную схему действий разработчика модели. Характерным примером такого рода является имитационный язык СЛАМ II (SLAM — Simulating Language for Alternative Modeling имитационный язык для альтернативного моделирования).

После составления программы решаем с ее помощью простейшую тестовую задачу (желательно, с заранее известным ответом) с целью устранения грубых ошибок. Это — лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. По существу, тестирование может продолжаться долго и закончиться тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Затем следует собственно численный эксперимент, и выясняется, соответствует ли модель реальному объекту (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментальными с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Прямо сейчас студенты читают про:

Химические свойства аминокислот Химическое поведение аминокислот определяется двумя функциональными группами -NН2 и –СООН.
Алгоритм действий при взятии мазка из зева Цель: лечебная. Показания: определяет врач. Противопоказания: определяет врач. I. ПОДГОТОВКА К МАНИПУЛЯЦИИ. 1. Приготовьте: https://studopedia.ru/2_88175_etapi-tseli-i-sredstva-kompyuternogo-matematicheskogo-modelirovaniya.html» target=»_blank»]studopedia.ru[/mask_link]

Математические модели. Списки

Урок 6: Модели математические

Урок 6: Модели математические

Математические модели – разнотипные задачи, которые из словесной формы переведены в форму символов, понятий и формул, выглядят компактнее, с ними удобнее работать, их проще переводить на язык компьютеров. Встречаются как в научной деятельности, так и в обычной жизни.

План урока:

Математические модели

Давайте прочитаем такую простую загадку:

«Мама насыпала троим детям целую вазу любимых шоколадных конфет. Дети не дождались, пока конфеты поделят, стали потихоньку их кушать. 5-летний Антон взял 6 штук и скушал, 10-летняя Ирина взяла половину того, что осталось. А 3-летнему Игорю досталось 1/3 всех конфет, что купила мама. Когда мама пришла, дети ссорились, что конфеты поделили не честно.

Читайте также:
Лучшие программы для конвертирования аудио файлов

Но она успокоила их, что все получили поровну».

В этом отрывке много информации: любимые конфеты, сколько у мамы было детей, их имена и возраст, а также, кто, сколько скушал сладкого. Но, чтобы узнать, честно ли дети поделили угощение, нужна лишь часть данных.

Построение математической модели этой истории:

1 matematicheskie modeli

Записываем математическую модель: x-6-1/2*(x-6)=1/3*x

Получается, первый ребенок взял 6 конфет, второй – (18-6)/2=6, третий – 18/3=6. Значит, мама была права, все дети скушали одинаковое количество сладкого.

Так решение математической модели позволило маме помирить детей.

Математическими моделями называются количественное описание взаимосвязей между объектами или процессами.

Другими словами, математическая модель – это выражение какого либо процесса или объекта при помощи формул, знаков и чисел. Надь, выдели правило красным полем, пожалуйста

То, что мы с вами сейчас сделали, называется математическое моделирование, то есть, замена исходной информации математическим образом. Это наиболее логичный подход, чтобы позже описать что-либо при помощи компьютерной программы.

Математическую модель легче исследовать, написав вычислительный алгоритм, который позволяет считать, решать любые задачи подобного типа.

Назначение матмоделей

Сфера применения моделирования:

2 matematicheskie modeli

Матмоделирование широко применяется: экономико-математические модели, финансовые прогнозы, инженерные расчеты. Оно позволяет изучить, анализировать и прогнозировать.

3 matematicheskie modeli

Источник

Значит, реальный эксперимент можно провести несколько раз, написать математическую модель процесса, а далее, используя компьютерную программу или ручные расчеты, «прогонять» другие значения без эксперимента.

Например, накормить тортом 1 человека, рассчитать, сколько кусков ему нужно для насыщения. Рассчитать, какого размера нужен торт, если приглашенных гостей будет 10, 20, 100 человек.

Для этого используется математический язык: формулы, знаки, символы, цифры, уравнения, системы уравнений. Это один из наиболее часто используемых и точных методов научного исследования.

Расчеты ядерных реакций, количество выделяемого тепла, радиации – все это лучше рассчитывать теоретически, а проверять экспериментально лишь частично. Изучение космических бесконечностей, океанских глубин, пока возможно только математическим путем, но чем больше человек осваивает небо и океан, тем чаще убеждается в правильности своих расчетов.

Химию, физику, экономику сложно представить без матмоделей. Теперь биологи, экологи и медики также стали широко использовать математическое программирование. Например, сейчас ученые всего мира периодически рассчитывают количество людей, которые пострадают от пандемии. Плюс они постоянно актуализируют свои прогнозы, вводя новые данные по смертности и выздоровлению, по стойкости вируса в различных условиях.

Чтобы содержать курей несушек, нужно знать, сколько и какого корма необходимо для содержания 1 курицы на 1 день. Если же покупать комбикорма, зерно, зелень бездумно, птица останется голодной, ведь часть сырья испортится, в части заведутся насекомые, а чего-то не хватит. Логичнее заранее рассчитать, сколько и чего покупать (+небольшой запас) и только тогда заводить несушек.

Пример математической модели. Определение, классификация и особенности

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос – это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

пример математической модели

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru