Операционные системы могут различаться особенностями реализации внутренних алгоритмов управления основными ресурсами компьютера (процессорами, памятью, устройствами), особенностями использованных методов проектирования, типами аппаратных платформ, областями использования и многими другими свойствами.
Ниже приведена классификация ОС по нескольким наиболее основным признакам.
Особенности алгоритмов управления ресурсами
От эффективности алгоритмов управления локальными ресурсами компьютера во многом зависит эффективность всей сетевой ОС в целом. Поэтому, характеризуя сетевую ОС, часто приводят важнейшие особенности реализации функций ОС по управлению процессорами, памятью, внешними устройствами автономного компьютера. Так, например, в зависимости от особенностей использованного алгоритма управления процессором, операционные системы делят на многозадачные и однозадачные, многопользовательские и однопользовательские, на системы, поддерживающие многонитевую обработку и не поддерживающие ее, на многопроцессорные и однопроцессорные системы.
08. Операционные системы. [Универсальный программист]
- однозадачные (например, MS-DOS, MSX) и
- многозадачные (OC EC, OS/2, UNIX, Windows 95).
Однозадачные ОС в основном выполняют функцию предоставления пользователю виртуальной машины, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Однозадачные ОС включают средства управления периферийными устройствами, средства управления файлами, средства общения с пользователем.
Многозадачные ОС, кроме вышеперечисленных функций, управляют разделением совместно используемых ресурсов, таких как процессор, оперативная память, файлы и внешние устройства.
- однопользовательские (MS-DOS, Windows 3.x, ранние версии OS/2);
- многопользовательские (UNIX, Windows NT).
Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская ОС является однозадачной.
- невытесняющая многозадачность (NetWare, Windows 3.x);
- вытесняющая многозадачность (Windows NT, OS/2, UNIX).
Основным различием между вытесняющим и невытесняющим вариантами многозадачности является степень централизации механизма планирования процессов. В первом случае механизм планирования процессов целиком сосредоточен в операционной системе, а во втором — распределен между системой и прикладными программами. При невытесняющей многозадачности активный процесс выполняется до тех пор, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению процесс. При вытесняющей многозадачности решение о переключении процессора с одного процесса на другой принимается операционной системой, а не самим активным процессом.
Операционная система и пакет прикладных программ — «Работа с таблицами, формулами, диаграммами»
Поддержка многонитевости. Важным свойством операционных систем является возможность распараллеливания вычислений в рамках одной задачи. Многонитевая ОС разделяет процессорное время не между задачами, а между их отдельными ветвями (нитями).
Многопроцессорная обработка. Другим важным свойством ОС является отсутствие или наличие в ней средств поддержки многопроцессорной обработки — мультипроцессирование. Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами.
В наши дни становится общепринятым введение в ОС функций поддержки многопроцессорной обработки данных. Такие функции имеются в операционных системах Solaris 2.x фирмы Sun, Open Server 3.x компании Santa Crus Operations, OS/2 фирмы IBM, Windows NT фирмы Microsoft и NetWare 4.1 фирмы Novell.
Многопроцессорные ОС могут классифицироваться по способу организации вычислительного процесса в системе с многопроцессорной архитектурой: асимметричные ОС и симметричные ОС. Асимметричная ОС целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам. Симметричная ОС полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.
Выше были рассмотрены характеристики ОС, связанные с управлением только одним типом ресурсов — процессором. Важное влияние на облик операционной системы в целом, на возможности ее использования в той или иной области оказывают особенности и других подсистем управления локальными ресурсами — подсистем управления памятью, файлами, устройствами ввода-вывода.
Специфика ОС проявляется и в том, каким образом она реализует сетевые функции: распознавание и перенаправление в сеть запросов к удаленным ресурсам, передача сообщений по сети, выполнение удаленных запросов. При реализации сетевых функций возникает комплекс задач, связанных с распределенным характером хранения и обработки данных в сети: ведение справочной информации о всех доступных в сети ресурсах и серверах, адресация взаимодействующих процессов, обеспечение прозрачности доступа, тиражирование данных, согласование копий, поддержка безопасности данных.
Особенности аппаратных платформ
На свойства операционной системы непосредственное влияние оказывают аппаратные средства, на которые она ориентирована. По типу аппаратуры различают операционные системы персональных компьютеров, мини-компьютеров, мейнфреймов, кластеров и сетей ЭВМ. Среди перечисленных типов компьютеров могут встречаться как однопроцессорные варианты, так и многопроцессорные. В любом случае специфика аппаратных средств, как правило, отражается на специфике операционных систем.
Очевидно, что ОС большой машины является более сложной и функциональной, чем ОС персонального компьютера. Так в ОС больших машин функции по планированию потока выполняемых задач, очевидно, реализуются путем использования сложных приоритетных дисциплин и требуют большей вычислительной мощности, чем в ОС персональных компьютеров. Аналогично обстоит дело и с другими функциями.
Сетевая ОС имеет в своем составе средства передачи сообщений между компьютерами по линиям связи, которые совершенно не нужны в автономной ОС. На основе этих сообщений сетевая ОС поддерживает разделение ресурсов компьютера между удаленными пользователями, подключенными к сети. Для поддержания функций передачи сообщений сетевые ОС содержат специальные программные компоненты, реализующие популярные коммуникационные протоколы, такие как IP, IPX, Ethernet и другие.
Многопроцессорные системы требуют от операционной системы особой организации, с помощью которой сама операционная система, а также поддерживаемые ею приложения могли бы выполняться параллельно отдельными процессорами системы. Параллельная работа отдельных частей ОС создает дополнительные проблемы для разработчиков ОС, так как в этом случае гораздо сложнее обеспечить согласованный доступ отдельных процессов к общим системным таблицам, исключить эффект гонок и прочие нежелательные последствия асинхронного выполнения работ.
Другие требования предъявляются к операционным системам кластеров. Кластер — слабо связанная совокупность нескольких вычислительных систем, работающих совместно для выполнения общих приложений, и представляющихся пользователю единой системой.
Наряду со специальной аппаратурой для функционирования кластерных систем необходима и программная поддержка со стороны операционной системы, которая сводится в основном к синхронизации доступа к разделяемым ресурсам, обнаружению отказов и динамической реконфигурации системы. Одной из первых разработок в области кластерных технологий были решения компании Digital Equipment на базе компьютеров VAX. Недавно этой компанией заключено соглашение с корпорацией Microsoft о разработке кластерной технологии, использующей Windows NT. Несколько компаний предлагают кластеры на основе UNIX-машин.
Наряду с ОС, ориентированными на совершенно определенный тип аппаратной платформы, существуют операционные системы, специально разработанные таким образом, чтобы они могли быть легко перенесены с компьютера одного типа на компьютер другого типа, так называемые мобильные ОС. Наиболее ярким примером такой ОС является популярная система UNIX. В этих системах аппаратно-зависимые места тщательно локализованы, так что при переносе системы на новую платформу переписываются только они. Средством, облегчающем перенос остальной части ОС, является написание ее на машинно-независимом языке, например, на С, который и был разработан для программирования операционных систем.
Особенности областей использования
- системы пакетной обработки (например, OC EC),
- системы разделения времени (UNIX, VMS),
- системы реального времени (QNX, RT/11).
Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием эффективности систем пакетной обработки является максимальная пропускная способность, то есть решение максимального числа задач в единицу времени.
Для достижения этой цели в системах пакетной обработки используются следующая схема функционирования: в начале работы формируется пакет заданий, каждое задание содержит требование к системным ресурсам; из этого пакета заданий формируется мультипрограммная смесь, то есть множество одновременно выполняемых задач. Для одновременного выполнения выбираются задачи, предъявляющие отличающиеся требования к ресурсам, так, чтобы обеспечивалась сбалансированная загрузка всех устройств вычислительной машины; так, например, в мультипрограммной смеси желательно одновременное присутствие вычислительных задач и задач с интенсивным вводом-выводом.
Таким образом, выбор нового задания из пакета заданий зависит от внутренней ситуации, складывающейся в системе, то есть выбирается «выгодное» задание. Следовательно, в таких ОС невозможно гарантировать выполнение того или иного задания в течение определенного периода времени.
В системах пакетной обработки переключение процессора с выполнения одной задачи на выполнение другой происходит только в случае, если активная задача сама отказывается от процессора, например, из-за необходимости выполнить операцию ввода-вывода. Поэтому одна задача может надолго занять процессор, что делает невозможным выполнение интерактивных задач. Таким образом, взаимодействие пользователя с вычислительной машиной, на которой установлена система пакетной обработки, сводится к тому, что он приносит задание, отдает его диспетчеру-оператору, а в конце дня после выполнения всего пакета заданий получает результат. Очевидно, что такой порядок снижает эффективность работы пользователя.
Системы разделения времени призваны исправить основной недостаток систем пакетной обработки — изоляцию пользователя-программиста от процесса выполнения его задач. Каждому пользователю системы разделения времени предоставляется терминал, с которого он может вести диалог со своей программой.
Так как в системах разделения времени каждой задаче выделяется только квант процессорного времени, ни одна задача не занимает процессор надолго, и время ответа оказывается приемлемым. Если квант выбран достаточно небольшим, то у всех пользователей, одновременно работающих на одной и той же машине, складывается впечатление, что каждый из них единолично использует машину. Ясно, что системы разделения времени обладают меньшей пропускной способностью, чем системы пакетной обработки, так как на выполнение принимается каждая запущенная пользователем задача, а не та, которая «выгодна» системе, и, кроме того, имеются накладные расходы вычислительной мощности на более частое переключение процессора с задачи на задачу. Критерием эффективности систем разделения времени является не максимальная пропускная способность, а удобство и эффективность работы пользователя.
Системы реального времени применяются для управления различными техническими объектами, такими, например, как станок, спутник, научная экспериментальная установка или технологическими процессами, такими, как гальваническая линия, доменный процесс и т.п. Во всех этих случаях существует предельно допустимое время, в течение которого должна быть выполнена та или иная программа, управляющая объектом, в противном случае может произойти авария: спутник выйдет из зоны видимости, экспериментальные данные, поступающие с датчиков, будут потеряны, толщина гальванического покрытия не будет соответствовать норме. Таким образом, критерием эффективности для систем реального времени является их способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата (управляющего воздействия). Это время называется временем реакции системы, а соответствующее свойство системы — реактивностью. Для этих систем мультипрограммная смесь представляет собой фиксированный набор заранее разработанных программ, а выбор программы на выполнение осуществляется исходя из текущего состояния объекта или в соответствии с расписанием плановых работ.
Некоторые операционные системы могут совмещать в себе свойства систем разных типов, например, часть задач может выполняться в режиме пакетной обработки, а часть — в режиме реального времени или в режиме разделения времени. В таких случаях режим пакетной обработки часто называют фоновым режимом.
Особенности методов построения
При описании операционной системы часто указываются особенности ее структурной организации и основные концепции, положенные в ее основу.
- Способы построения ядра системы — монолитное ядро или микроядерный подход. Большинство ОС использует монолитное ядро, которое компонуется как одна программа, работающая в привилегированном режиме и использующая быстрые переходы с одной процедуры на другую, не требующие переключения из привилегированного режима в пользовательский и наоборот. Альтернативой является построение ОС на базе микроядра, работающего также в привилегированном режиме и выполняющего только минимум функций по управлению аппаратурой, в то время как функции ОС более высокого уровня выполняют специализированные компоненты ОС — серверы, работающие в пользовательском режиме. При таком построении ОС работает более медленно, так как часто выполняются переходы между привилегированным режимом и пользовательским, зато система получается более гибкой — ее функции можно наращивать, модифицировать или сужать, добавляя, модифицируя или исключая серверы пользовательского режима. Кроме того, серверы хорошо защищены друг от друга, как и любые пользовательские процессы.
- Построение ОС на базе объектно-ориентированного подхода дает возможность использовать все его достоинства, хорошо зарекомендовавшие себя на уровне приложений, внутри операционной системы, а именно: аккумуляцию удачных решений в форме стандартных объектов, возможность создания новых объектов на базе имеющихся с помощью механизма наследования, хорошую защиту данных за счет их инкапсуляции во внутренние структуры объекта, что делает данные недоступными для несанкционированного использования извне, структуризованность системы, состоящей из набора хорошо определенных объектов.
- Наличие нескольких прикладных сред дает возможность в рамках одной ОС одновременно выполнять приложения, разработанные для нескольких ОС. Многие современные операционные системы поддерживают одновременно прикладные среды MS-DOS, Windows, UNIX (POSIX), OS/2 или хотя бы некоторого подмножества из этого популярного набора. Концепция множественных прикладных сред наиболее просто реализуется в ОС на базе микроядра, над которым работают различные серверы, часть которых реализуют прикладную среду той или иной операционной системы.
- Распределенная организация операционной системы позволяет упростить работу пользователей и программистов в сетевых средах. В распределенной ОС реализованы механизмы, которые дают возможность пользователю представлять и воспринимать сеть в виде традиционного однопроцессорного компьютера. Характерными признаками распределенной организации ОС являются: наличие единой справочной службы разделяемых ресурсов, единой службы времени, использование механизма вызова удаленных процедур (RPC) для прозрачного распределения программных процедур по машинам, многонитевой обработки, позволяющей распараллеливать вычисления в рамках одной задачи и выполнять эту задачу сразу на нескольких компьютерах сети, а также наличие других распределенных служб.
Источник: citforum.ru
Основы организации операционных систем Microsoft Windows — тест 1
nbsp
nbsp
nbsp
Номер 2
Ради чего корпорация MS пожертвовала модульностью и гибкостью архитектуры микроядра?
nbsp
nbsp
nbsp
Номер 3
Какие изменения в архитектуре ОС Windows позволили добиться повышения производительности?
nbsp
nbsp
nbsp
Номер 4
Преимущество использования DLL по сравнению со статической линковкой состоит в том, что
Источник: eljob.ru
Операционная система является прикладной программой
Различают системы реального времени двух типов — системы жесткого реального времени и системы мягкого реального времени.
Системы жесткого реального времени не допускают никаких задержек реакции системы ни при каких условиях, так как:
- результаты могут оказаться бесполезны в случае опоздания
- может произойти катастрофа в случае задержки реакции
- стоимость опоздания может оказаться бесконечно велика.
Примеры систем жесткого реального времени — бортовые системы управления, системы аварийной защиты, регистраторы аварийных событий.
Системы мягкого реального времени характеризуются тем, что задержка реакции не критична, хотя и может привести к увеличению стоимости результатов и снижению производительности системы в целом.Пример — работа сети. Если система не успела обработать очередной принятый пакет, это приведет к таймауту на передающей стороне и повторной посылке (в зависимости от протокола, конечно). Данные при этом не теряются, но производительность сети снижается.Основное отличие между системами жесткого и мягкого реального времени можно выразить так: система жесткого реального времени никогда не опоздает с реакцией на событие, система мягкого реального времени — не должна опаздывать с реакцией на событие
Ядро операционной системы
Ядро́ — центральная часть операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам компьютера, память, внешнее аппаратное обеспечение, внешнее устройство ввода и вывода информации, переводя команды языка приложений на язык двоичных кодов, которые понимает компьютер.Как основополагающий элемент ОС, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.
Монолитное ядро
Монолитное ядро предоставляет богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро — старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.
Достоинства: Скорость работы, упрощённая разработка модулей.
Недостатки: Поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы.
Примеры: Традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.
Некоторые старые монолитные ядра, в особенности систем класса UNIX/Linux, требовали перекомпиляции при любом изменении состава оборудования. Большинство современных ядер позволяют во время работы подгружать модули, выполняющие часть функций ядра. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы, называемой монолитным ядром (monolithic kernel), которое представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме.
Микроядро предоставляет только элементарные функции управления процессами и минимальный набор абстракций для работы с оборудованием. Большая часть работы осуществляется с помощью специальных пользовательских процессов, называемых сервисами. Решающим критерием «микроядерности» является размещение всех или почти всех драйверов и модулей в сервисных процессах.
Достоинства: Устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов.
В микроядерной операционной системе можно, не прерывая её работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.
Недостатки: Передача данных между процессами требует накладных расходов.
Среда исполнения
Требования, предъявляемые к среде исполнения систем реального времени, следующие:
- небольшая память системы — для возможности ее встраивания;
- система должна быть полностью резидентна в памяти, чтобы избежать замещения страниц памяти или подкачки;
- система должна быть многозадачной — для обеспечения максимально эффективного использования всех ресурсов системы;
- ядро с приоритетом на обслуживание прерывания. Приоритет на прерывание означает, что готовый к запуску процесс, обладающий некоторым приоритетом, обязательно имеет преимущество в очереди по отношению к процессу с более низким приоритетом, быстро заменяет последний и поступает на выполнение. Ядро заканчивает любую сервисную работу, как только поступает задача с высшим приоритетом. Это гарантирует предсказуемость системы;
- диспетчер с приоритетом — дает возможность разработчику прикладной программы присвоить каждому загрузочному модулю приоритет, неподвластный системе. Присвоение приоритетов используется для определения очередности запуска программ, готовых к исполнению. Альтернативным такому типу диспетчеризации является диспетчеризация типа «карусель», при которой каждой готовой к продолжению программе дается равный шанс запуска. При использовании этого метода нет контроля за тем, какая программа и когда будет выполняться. В среде реального времени это недопустимо. Диспетчеризация, в основу которой положен принцип присвоения приоритета, и наличие ядра с приоритетом на прерывание позволяют разработчику прикладной программы полностью контролировать систему. Если наступает событие с высшим приоритетом, система прекращает обработку задачи с низшим приоритетом и отвечает на вновь поступивший запрос.
Сочетание описанных выше свойств создает мощную и эффективную среду исполнения в реальном времени.
Кроме свойств среды исполнения, необходимо рассмотреть также сервис, предоставляемый ядром ОС реального времени. Основой любой среды исполнения в реальном времени является ядро или диспетчер.
Ядро управляет аппаратными средствами целевого компьютера: центральным процессором, памятью и устройствами ввода/вывода; контролирует работу всех других систем и программных средств прикладного характера. В системе реального времени диспетчер занимает место между аппаратными средствами целевого компьютера и прикладным программным обеспечением. Он обеспечивает специальный сервис, необходимый для работы приложений реального времени. Предоставляемый ядром сервис дает прикладным программам доступ к таким ресурсам системы, как, например, память или устройства ввода/вывода.
Ядро может обеспечивать сервис различных типов:
- Межзадачный обмен. Часто необходимо обеспечить передачу данных между программами внутри одной и той же системы Кроме того, во многих приложениях возникает необходимость взаимодействия с другими системами через сеть. Внутренняя связь может быть осуществлена через систему передачи сообщений. Внешнюю связь можно организовать либо через датаграмму (наилучший способ доставки), либо по линиям связи (гарантированная доставка). Выбор того или иного способа зависит от протокола связи.
- Разделение данных. В прикладных программах, работающих в реальном времени, наиболее длительным является сбор данных. Данные часто необходимы для работы других программ или нужны системе для выполнения каких-либо своих функций. Во многих системах предусмотрен доступ к общим разделам памяти. Широко распространена организация очереди данных. Применяется много типов очередей, каждый из которых обладает собственными достоинствами.
- Обработка запросов внешних устройств. Каждая прикладная программа в реальном времени связана с внешним устройством определенного типа. Ядро должно обеспечивать службы ввода/вывода, позволяющие прикладным программам осуществлять чтение с этих устройств и запись на них. Для приложений реального времени обычным является наличие специфического для данного приложения внешнего устройства. Ядро должно предоставлять сервис, облегчающий работу с драйверами устройств. Например, давать возможность записи на языках высокого уровня — таких, как Си или Паскаль.
- Обработка особых ситуаций. Особая ситуация представляет собой событие, возникающее во время выполнения программы. Она может быть синхронной, если ее возникновение предсказуемо, как, например, деление на нуль. А может быть и асинхронной, если возникает непредсказуемо, как, например, падение напряжения. Предоставление возможности обрабатывать события такого типа позволяет прикладным программам реального времени быстро и предсказуемо отвечать на внутренние и внешние события. Существуют два метода обработки особых ситуаций — использование значений состояния для обнаружения ошибочных условий и использование обработчика особых ситуаций для прерывания ошибочных условий и их корректировки.
Обзор архитектур ОСРВ
За свою историю архитектура операционных систем претерпела значительное развитие. Один из первых принципов построения, монолитные ОС (рисунок 1), заключался в представлении ОС как набора модулей, взаимодействующих между собой различным образом внутри ядра системы и предоставляющих прикладным программам входные интерфейсы для обращений к аппаратуре.
Основным преимуществом монолитной архитектуры является ее относительная быстрота работы по сравнению с другими архитектурами.
Недостатки монолитной архитектуры.
1. Системные вызовы, требующие переключения уровней привилегий (от пользовательской задачи к ядру), должны быть реализованы как прерывания или специальный тип исключений. Это сильно увеличивает время их работы.
2. Ядро не может быть прервано пользовательской задачей. Это может приводить к тому, что высокоприоритетная задача может не получить управления из-за работы низкоприоритетной.
3. Негибкость и сложность развития: изменение части ядра системы требует его полной перекомпиляции.
Рисунок 1. Архитектура монолитной ОС
В задачах автоматизации широкое распространение в качестве ОСРВ получили уровневые ОС (рисунок 2).Примером такой ОС является хорошо известная система MS-DOS. В системах этого класса прикладные приложения могли получить доступ к аппаратуре не только посредством ядра системы или ее резидентных сервисов, но и непосредственно. По такому принципу строились ОСРВ в течение многих лет. По сравнению с монолитными ОС такая архитектура обеспечивает значительно большую степень предсказуемости реакций системы, а также позволяет осуществлять быстрый доступ прикладных приложений к аппаратуре. Недостатком
таких систем является отсутствие в них многозадачности. В рамках такой архитектуры проблема обработки асинхронных событий сводилась к буферизации сообщений, а затем последовательному опросу буферов и обработке. При этом соблюдение критических сроков обслуживания обеспечивалось высоким быстродействием вычислительного комплекса по сравнению со скоростью протекания внешних процессов.
Рисунок 2. Архитектура уровневой ОС
Одной из наиболее эффективных архитектур для построения операционных систем реального времени считается архитектура клиент – сервер. Общая схема ОС работающей по этой технологии представлена на рисунке 3. Основным принципом такой архитектуры является вынесение сервисов ОС в виде серверов на уровень пользователя, а микроядро выполняет функции диспетчера сообщений между клиентскими пользовательскими программами и серверами – системными сервисами. Такая архитектура дает массу плюсов с точки зрения требований к ОСРВ и встраиваемым системам. Среди этих преимуществ можно отметить:
1. Повышается надежность ОС, т.к. каждый сервис является, по сути, самостоятельным приложением и его легче отладить и отследить ошибки.
2. Такая система лучше масштабируется, поскольку ненужные сервисы могут быть исключены из системы без ущерба к ее работоспособности.
3. Повышается отказоустойчивость системы, т.к. «зависший» сервис может быть перезапущен без
перезагрузки системы.
Рисунок 3. Построение ОС с использованием архитектуры клиент-сервер
К сожалению на сегодняшний день не так много ОС реализуется по принципу клиент-сервер. Среди известных ОСРВ реализующих архитектуру микроядра можно отметить OS9 и QNX.
Источник: omoled.ru