Доказана генетическая запрограммированность продолжительность жизни. Какие бы идеальные условия ни были созданы для лабораторных мышей, они живут не более 3…3,5 лет, причем есть линии короткоживущие и долгоживущие. На среднюю продолжительность жизни существенно влияют внешние факторы, но максимальную продолжительность жизни изменить очень трудно. Так, средняя продолжительность жизни человека за последние 100 лет увеличилась примерно в два раза, тогда как на максимальной продолжительности жизни это никак не сказалось.
I Одностадийные и многостадийные программы .Одностадийные программы предусматривают только один переход от начала морфогенеза к его завершению. Одностадийные программы всегда являются элементарными.
Понятие элементарности подразумевает неделимость программы на составные части, ее устойчивость к парагенетическим воздействиям: слабые воздействия не влияют на ход морфогенеза, а сильные – прерывают выполнение программы. По количеству возможных траекторий морфогенеза одностадийные программы делятся на неразветвленные и разветвленные.
Онтогенез. Эмбриональное развитие организма
В неразветвленной программе закодирована только одна возможная траектория морфогенеза. В результате реализации такой программы оказывается возможным только один нормальный результат развития. В разветвленной программе закодировано несколько взаимоисключающих траекторий морфогенеза. В результате реализации такой программы оказывается возможным достижение нескольких взаимоисключающих нормальных результатов развития.
Многостадийные программы включают несколько переходов, каждый из которых завершается достижением определенного промежуточного состояния (узла). Многостадийные программы могут быть элементарными и составными. Элементарная программа должна быть выполнена до конца, в противном случае наблюдаются нарушения морфогенеза (морфозы и тераты).
В этом отношении элементарные программы внешне сходны с одностадийными линейными программами. Составные программы основаны на явлении анаболии: каждое последующее промежуточное состояние является надстройкой по отношению к предыдущему. При этом морфогенез может остановиться при достижении любого промежуточного состояния. В результате образуются гипоморфозы – недоразвитые структуры.
II Неразветвленные и разветвленные программы Неразветвленные программы предусматривают лишь одну траекторию морфогенеза; любое отклонение от этой траектории приводит к гибели организма. Разветвленные программы предусматривают существование нескольких траекторий морфогенеза.
Разветвление обусловлено триггерным эффектом – по достижении определенного промежуточного состояния перед биологической системой открывается возможность переключения, или выбора дальнейшего пути развития (таким образом, триггер можно представить себе как железнодорожную стрелку, перевод которой осуществляется стрелочником или диспетчером). Многостадийные разветвленные программы делятся на древовидные и сетевые. В древовидных программах траектории морфогенеза не пересекаются. Тогда выбор одной из траекторий морфогенеза в узловых точках исключает ряд возможных конечных результатов. В сетевых программах траектории морфогенеза пересекаются в узловых точках таким образом, что достижение одного результата возможно разными способами.
ОНТОГЕНЕЗ: эмбриональное и постэмбриональное развитие
III Простые и сложные программы.Простые программы включают только одну подпрограмму или несколько идентичных подпрограмм. Каждая подпрограмма обозначается определенным символом (например, А). Тогда диплоидные единицы развития содержат две идентичные подпрограммы развития, дублирующие друг друга.
Тогда простая программа может быть обозначена двумя одинаковыми символами (например, АА). С точки зрения формальной генетики, носитель простой программы может быть назван гомозиготой. Сложные программы включают несколько подпрограмм, которые обозначаются сходными символами (например, А и а).
В этом случае диплоидные единицы развития содержат две сходные подпрограммы развития, различным образом взаимодействующие между собой. Тогда сложная программа может быть обозначена двумя сходными символами (например, Аа), а носитель сложной программы может быть назван гетерозиготой. Таким образом, для многих генов характер их проявления жестко не предопределен; фенотип организма формируется в ходе развития на основе взаимодействия генотипа и среды.
ЭТАПЫ ОНТОГЕНЕЗА — последовательные периоды онтогенеза с характерными морфофизиологическими особенностями: эмбриональный, ювенильный, зрелости, размножения, старости.
Поможем написать любую работу на аналогичную тему
- Реферат ОНТОГЕНЕЗ КАК ПРОЦЕСС РЕАЛИЗАЦИИ НАСЛЕДСТВЕННОЙ ПРОГРАММЫ РАЗВИТИЯ ОРГАНИЗМА. От 250 руб
- Контрольная работа ОНТОГЕНЕЗ КАК ПРОЦЕСС РЕАЛИЗАЦИИ НАСЛЕДСТВЕННОЙ ПРОГРАММЫ РАЗВИТИЯ ОРГАНИЗМА. От 250 руб
- Курсовая работа ОНТОГЕНЕЗ КАК ПРОЦЕСС РЕАЛИЗАЦИИ НАСЛЕДСТВЕННОЙ ПРОГРАММЫ РАЗВИТИЯ ОРГАНИЗМА. От 700 руб
Источник: students-library.com
Онтогенез как процесс реализации генетической информации. Гипотеза дифференциальной активности генов. Сущность концепции онтогенеза
Как только в результате дробления образуются два первых бластомера, каждый из них становится неразрывной частью новой биологической системы и его поведение определяется этой системой. Каждая стадия развития организма есть новое состояние целостности, интеграции. На любой стадии развития зародыш представляет собой интегрированное целое, а не сумму бластомеров и клеток. Интеграция развивающихся зародышей непрерывно меняется по мере развития. Основными механизмами интеграции являются межклеточные взаимодействия, а также гуморальная и нервная регуляция.
Различия в уровне интеграции, в характере взаимодействия клеток у разных видов животных могут быть очень существенными. Кроме того, иногда на более молодых стадиях развития зародыш более интегрирован, чем на более поздних. Так, личинки асцидий, вероятно, более интегрированы, чем взрослые формы. То же наблюдается, по-видимому, у многих моллюсков и червей. У позвоночных животных Интегрированность нарастает по мере углубления процессов органогенеза и цитодифференцировки.
Эмбриональная индукция — это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка.
Онтогенез, или индивидуальное развитие организма, осуществляется на основе наследственной программы, получаемой через вступившие в оплодотворение половые клетки родителей. При бесполом размножении эта программа заключена в неспециализированных клетках единственного родителя, дающего потомство. В ходе реализации наследственной информации в процессе онтогенеза у организма формируются видовые и индивидуальные морфологические, физиологические и биохимические свойства, иными словами — фенотип. В процессе развития организм закономерно меняет свои характеристики, оставаясь, тем не менее, целостной системой. Поэтому под фенотипом надо понимать совокупность свойств на всем протяжении индивидуального развития, на каждом этапе которого существуют свои особенности.
Ведущая роль в формировании фенотипа принадлежит наследственной информации, заключенной в генотипе организма. При этом простые признаки развиваются как результат определенного типа взаимодействия соответствующих аллельных генов. Вместе с тем существенное влияние на их формирование оказывает вся система генотипа (см. разд. 3.6.6). Формирование сложных признаков осуществляется в результате разнообразных взаимодействий неаллельных генов непосредственно в генотипе либо контролируемых ими продуктов.
Наряду с этим результат реализации наследственной программы, заключенной в генотипе особи, в значительной мере зависит от условий, в которых осуществляется этот процесс. Факторы внешней по отношению к генотипу среды могут способствовать или препятствовать фенотипическому проявлению генетической информации, усиливать или ослаблять степень такого проявления. Уже на стадии транскрипции контроль экспрессии отдельных генов осуществляется путем взаимодействия генетических и негенетических факторов.
Следовательно, даже в формировании элементарных признаков организма принимают участие генотип как система взаимодействующих генов и среда, в которой он реализуется. В генетике индивидуального развития среда представляет собой сложное понятие. Совокупность внутриорганизменных факторов, влияющих на реализацию наследственной программы, обозначают как среду 1-го порядка. С другой стороны, выделяют понятие окружающей среды, или среды 2-го порядка, как совокупности внешних по отношению к организму факторов.
1939 год Томас Морган выдвинул гипотезу: «дифференцировка клеток связана с активностью разных генов одного и того же генома». В настоящее время известно, что в дифференцированных клетках работает около 10% генов, а остальные неактивны. В силу этого в разных типах специализированных клеток функционируют свои определенные гены.
Специальными опытами по пересадки ядер из клеток кишечника головастика в безъядерную яйцеклетку было доказано, что в дифференцированных клетках сохраняется генетический материал и прекращение функционирования определенных генов обратимо. Из яйца лягушки удаляли ядро, брали ядро из клетки кишечника головастика. Развитие не происходило, иногда эмбриогенез происходил нормально. Строение взрослой лягушки полностью определялось ядром.
Концепции: При сравнении зиготы и половозрелой особи, которые, по сути, являются двумя разными онтогенетическими стадиями существования одного и того же организма, обнаруживаются очевидные различия, касающиеся по крайней мере размеров и формы. Начиная с XVII в. ученые пытались познать и объяснить процессы, приводящие к этим количественным и качественным изменениям особи.
Первоначально возникла гипотеза, согласно которой онтогенез рассматривали лишь как рост расположенных в определенном пространственном порядке предсуществующих структур и частей будущего организма. В рамках этой гипотезы, получившей название преформизма, каких-либо новообразований или преобразований структур в индивидуальном развитии не происходит.
Альтернативная концепция эпигенеза была сформулирована в середине XVIII в. Ф. К. Вольфом, впервые обнаружившим новообразование нервной трубки и кишечника в ходе эмбрионального развития. Индивидуальное развитие стали связывать целиком с качественными изменениями, полагая, что структуры и части организма возникают как новообразования из бесструктурной яйцеклетки.
В XIX в. К. Бэр впервые описал яйцо млекопитающих и человека, а также зародышевые листки и обнаружил сходство плана строения зародышей различных классов позвоночных — рыб, амфибий, рептилий, птиц, млекопитающих. Бэр рассматривал онтогенез не как предобразование, не как новообразование структур, а как их преобразование, что вполне согласуется с современными представлениями.
Выяснение конкретных клеточных и системных механизмов таких преобразований составляет основную проблему современной биологии развития.
Источник: studopedia.su
Онтогенез как процесс реализации наследственной программы развития организма. Детерминация. Дифференциация. Тотипотентность ядра соматической клетки, ее экспериментальное доказательство
Раздел генетики, изучающий генетические основы индивидуального развития (онтогенеза), называется феногенетикой. Онтогенез включает увеличение массы организма (рост) и структурно-функциональную дифференциацию составляющих его клеток.
Понятия «рост» и «развитие» применимы как к одноклеточным, так и к многоклеточным эукариотическим организмам, однако специфика онтогенеза тех и других обусловлена глубокими эволюционными отличиями между ними, связанными с возникновением многоклеточности. Индивидуальное развитие многоклеточных эукариот начинается с оплодотворенной яйцеклетки.
Однако уже организм новорожденного ребенка содержит около 10 14 клеток, а тело взрослого человека состоит из 10 15 -10 16 клеток. В результате процессов, происходящих в онтогенезе, формируются органы и ткани, выполняющие, как правило, ограниченное число функций.
Структура клеток тканей взрослого организма отличается, и весьма заметно, от структуры яйцеклетки и приспособлена к выполнению тканеспецифических функций, возникающих в ходе дифференциации. Дифференциация — это процесс формирования структурно-функциональной организации клеток многоклеточных животных и растений, в результате которого клетки приобретают способность к выполнению определенных функций в сложном организме. Большинство клеток детерминированы, т. е. могут развиваться только в каком-либо определенном направлении. Детерминация начинается в раннем эмбриогенезе и постепенно сужает число возможных превращений клеток до одного какого-либо дифференцированного состояния или очень немногих.
Дифференцированное состояние в норме стабильно: клетки нервной ткани не превращаются в печеночные или эпителиальные клетки кишечника, и наоборот. Советский биолог А. А. Заварзин открыл основную тенденцию в эволюции тканевых клеток: по мере усложнения организации их носителей они все больше и больше становятся частями целого, теряют самостоятельность и в своих проявлениях целиком зависят от надклеточных регуляционных систем: внутри- и межтканевых отношений, гуморальных и нервных факторов. Другими словами, соматические клетки животных эволюционируют как субъединицы целостного организма. Конечная дифференцировка часто связана с утратой способности клеток к размножению — пролиферации.
Тотипотентность ядра соматической клетки. Дж. Гердон продемонстрировал возможность полного развития Xenopus laevis на основе генетической информации ядра соматической клетки. Неоплодотворенные яйца X. laevis облучали большими дозами ультрафиолетового света и таким образом убивали их ядра.
Затем в энуклеированное яйцо инъецировали ядро из эпителия кишечника головастика. В ряде случаев из таких яиц развились головастики, а затем взрослые лягушки. В качестве генетического маркера, гарантировавшего чистоту эксперимента, было использовано число ядрышек.
Лягушки, от которых брали ядра, образовывали два ядрышка на ядро, т. е. каждый ядрышковый организатор гомологичных хромосом функционировал нормально. В качестве донора соматических ядер использовали X. laevis, гетерозиготных по делеции ядрышкового организатора, и потому имевших только одно ядрышко на ядро. Все лягушки, развившиеся в результате пересадки ядер, имели по одному ядрышку. Таким образом, эти эксперименты показали, что дифференци-ровка клеток в онтогенезе не обязательно сопровождается необратимой инактивацией генетического материала ядра, а проблема генетического контроля индивидуального развития тесно связана с проблемой дифференциальной экспрессии генов. Тотипотентность соматических клеток растений дает большие возможности для изучения дифференциального действия генов в онтогенезе.
Источник: studwood.net