Как я и обещал, перехожу от обзора программ замены калькулятора к более серьезным инструментам. Если помните схему из предыдущего поста, то во второй категории находились табличные: OpenOffice / LibreOffice сотоварищи. Эту партию мы можем смело пропустить, так как к командной строке она не относится, к тому же, среди читателей Хабра трудно найти человека, который бы в них не разбирался. Поэтому перехожу сразу к третьей категории.
Специализированные математические программы, уровень студент+
На первом месте в этом списке находится Octave , и это не случайность. Исследователи из Университета Мэриленда в США провели сравнительный анализ математических вычислений, используя MATLAB, Octave, SciLab и FreeMat в простом сценарии и в сложном. В первом случае решали систему линейных уравнений а в втором — конечно-разностную дискретизацию уравнения Пуассона в двухмерном пространстве. Основной вывод — GNU Octave справляется с задачами лучше остальных открытых математических пакетов, демонстрируя результат (страницы 23 и 25) сопоставимый с матлабовским.
Первый опыт Octave Online, делаем регулятор температуры
Но сначала немного исторического контекста, чтобы понять, как закалялись математические программы с открытыми исходниками.
Догнать и перегнать MATLAB
Так сложилось, что коммерческие программы прибежали и первыми застолбили поляну математических вычислений. Уже с конца 1970-х гг. создатель языка программирования Клив Моулер распространяет MATLAB в университетах США, а в 1984-м вместе с двумя компаньонами переписывают его с Фортрана на Си и создают компанию The MathWorks. Примечательно, что ранние версии распространялись с открытым исходным кодом.
Это было-было, а MATLAB , каким мы его знаем сегодня — это ЯП высокого уровня с поддержкой 2D / 3D графики, разнообразными математическими функциями, интерактивной средой программирования, численных расчетов и решения задач. Внешние интерфейсы позволяют ему интегрироваться со сторонними приложениями и языками программирования. Более 1 000 000 инженеров и ученых по всему миру используют MATLAB и платят за это солидную денежку.
С большим опозданием в игру включаются программы с открытыми исходниками. Только в 1990-х появляются математические пакеты GNU Octave, Scilab и вступают в конкуренцию с лидером вычислительного программирования.
Задуманный изначально как программное пособие для проектирования химического реактора и названный в честь профессора химии Октава Левеншпиля, преподававшего автору математического пакета, Octave призван был заменить студентам Техасского Университета сложный в отладке Fortran . Версия 1.0 вышла в свет 17 февраля 1994 г. Проект стабильно развивается, и в июле нынешнего года зарелизился Octave 4.0.3 . Ждем ебилдов .
Основной миссией Octave была, и в обозримом будущем скорее всего так и останется, быть годной заменой MATLAB так же, как OpenOffice/LibreOffice замещает MS Office для тех, кто умеет считать копейку. Собственно, для этого Octave имеет совместимый с MATLAB синтаксис и набор функций. Более того, несовместимость с MATLAB считается багом, однако софтверная Фемида уже имеет подобный прецедент, и это не считается нарушением копирайта. В этой связи, можно считать Octave программным клоном. Правда о полной совместимости пока говорить не приходится, но работа в этом направлении не прекращается.
Octave. Установка пакетов
Octave написан на C++ , используя стандартную библиотеку шаблонов, имеет интерактивный командный интерфейс, поддерживает расширения — динамически загружаемые модули на родном языке или на C, C++, Fortran и др. Так же как и MATLAB , в алгебраических вычислениях Octave использует библиотеки Basic Linear Algebra Subroutines (BLAS) и Linear Algebra Package (LAPACK).
Установка
Установка Octave в Linux ничем не отличается от установки других программ. На Gentoo Linux запускаем:
$ sudo emerge -av octave
Дебианщики делают то же самое с помощью apt .
$ sudo aptitude install octave
Для SUSE и Arch тоже все очень просто, а вот пользователям Красной Шапки и CentOS придется чуток повозиться. Попытка установить Octave легким движением кисти завершается ошибкой, пакет в репозитариях не найден.
Благо, есть обходной путь. Нужно сперва установить пакет epel-release.
И только после этого yum install octave сработает.
Наконец, все готово и программа установлена.
Операции с матрицами
Не будем терять время и делать операции, которые можно повторить с помощью bc и awk , о ктоторых речь шла в прошлый раз. Поиграемся немного с матрицами.
Сперва простое транспонирование матрицы:
octave:1> A=[1 3 5; 2 4 6] A = 1 3 5 2 4 6 octave:2> A’ ans = 1 2 3 4 5 6
Попробуем решить систему линейных уравнений:
x + y + z = 9 2x + 4y — 3z = 1 3x + 6y — 5z = 0
Вбиваем матрицу A, вектор b и решаем уравнение Ax = b в матричном виде
octave:1> A=[1 1 1; 2 4 -3; 3 6 -5] A = 1 1 1 2 4 -3 3 6 -5 octave:2> b=[9; 1; 0] b = 9 1 0 octave:3> x=Ab x = 7.00000 -1.00000 3.00000
Находим детерминант и собственные значения матрицы.
octave:4> det (A) ans = -1.00000 octave:5> eig (A) ans = -2.88897 2.76372 0.12525
Комплексные числа тоже поддерживаются в вычислениях.
octave:6> A=[-3 0 2; 1 -1 0; -2 -1 0] A = -3 0 2 1 -1 0 -2 -1 0 octave:7> x=det (A) x = -6 octave:8> y=eig(A) y = -1.00000 + 1.41421i -1.00000 — 1.41421i -2.00000 + 0.00000i
Функции и переменные
В Octave переменные и функции создавать гораздо проще, чем, к примеру, в Java или C. На примере матриц, мы уже видели как объявлять переменные. Создания новой функции имеет следующий синтаксис
function [res1, res2, . resM] = имя_функции (arg1, arg2, . argN) тело функции endfunction
Как правило, новую функцию создают либо в отдельном файле, либо в скрипт-файле Octave
до первого ее вызова. Если предполагается использовать пользовательскую функцию в разных скрипт-файлах, то, конечно, предпочтительно создать ее в отдельном файле. В GNU Octave файлы с функциями имеют расширение .m и загружаются автоматически. Имя файла должно строго совпадать с именем функции.
Напишем функцию для решения квадратичного уравнения ax² + bx + c = 0
octave:9> function [x1,x2] = quadr(a, b, c) > D = sqrt(b^2-4*a*c); > x1 = (-b-D)/(2*a); > x2 = (-b+D)/(2*a); > endfunction octave:10> [y1,y2]=quadr(a, b, c) y1 = 2 y2 = 3
Графический интерфейс
Вообще-то, мы тут за математику командной строки гутарим, но пока непонятно как вывести на экран график функции. Впрочем, никакого секрета тут нет — для этих целей используется Gnuplot . Так можно изобразить Аттрактор Лоренца, установив дополнительный пакет odepkg .
Наиболее удобной графической оболочкой для работы с Octave является программа QtOctave . Последняя уже стабилизировалась и включена в состав пакета с момента выхода Octave 4.0 .
Что-же дальше?
Может возникнуть вопрос: а зачем вообще нужны открытые математические пакеты? Офисные приложения нужны всем, но ведь далеко не каждому необходимо сидя дома решать уравнения Пуассона, с помощью преобразования Лапласа. Для ВУЗ-ов MATLAB стоит значительно дешевле, нежели для физических лиц и коммерческих организаций. Коммерческие организации, если будет нужно, найдут денежные средства, а обычные люди пусть занимаются математикой в университетах или считают столбиком.
Конечно же, это ошибочное мнение. Научные расчеты, выполненные с использованием открытого ПО имеют дополнительный «уровень защиты», ведь при желании любой может повторить прогнать те же самые расчеты и проверить валидность результатов. Те же самые вычисления, выполненные на дорогущем ПО, частично отсекают возможность проверки результатов.
Проблема на самом деле гораздо шире (английский текст) и дело не только в открытых или проприетарных математических программах. Не секрет, что научные журналы как правило не требуют от авторов предоставить данные и методику, достаточные для гарантированного повтора результатов эксперимента, проверки модели. Особенно часто этим грешат экономисты и финансисты, попросту засекречивая свои данные. Проверка расчетов и выводов среди выборки из массива статей с «засекреченными» данными дала неожиданные результаты (английский текст). Наука, как и софт, должна быть открытой, вот почему открытые математические пакеты имеют ценность для всего общества.
Рекомендуется к прочтению
Кроме последней книги, остальные материалы, использованные в статье, можно без труда найти в интернете. Половина из приведенных выше ссылок ведут на английские страницы. Буду рад вкратце сообщить о чем идет там речь или помочь с переводом.
- GNU Octave 4.0.1 Manual
- Алексеев Е.Р., Чеснокова О.В GNU Octave для студентов и преподавателей, 2011
- Н. Б. Шамрай Краткое руководство по работе с пакетами GNU Octave и Gnuplot, 2011
- Jesper Schmidt HansenGNU Octave
Источник: habr.com
GNU Octave
GNU Octave — система для математических вычислений и язык высокого уровня, в основном предназначенный для численных расчётов.
Проект был начат в 1988 году Джеймсом Роулингсом (James B. Rawlings), первоначально Octave была разработана как вспомогательное программное обеспечение для курса по проектированию ядерных реакторов. В 1992 году началась разработка Octave как отдельного проекта в рамках проекта GNU (The GNU Project) под именем GNU Octave.
Название Octave проект получил в честь профессора Октейва Левенспиля (Octave Levenspiel), химика- технолога написавшего книгу по созданию химического реактора, ещё он известен тем что может быстро выполнять расчёты на маленьком кусочке бумаги.
Сейчас GNU Octave больше чем система математических вычислений для учебного курса с ограниченной областью применения, хотя первоначальные цели проекта были несколько расплывчатыми, но разработчики ставили задачу создать то что позволит студентам решать реальные задачи, в том числе отличные от создания химических реакторов.
GNU Octave — высокоуровневый интерпретируемый язык программирования, очень похожий на C (си) и поддерживающий большинство функций стандартной библиотеки Си, а также основные команды и системные вызовы Unix. Язык обладает очень большой библиотекой математических функций, в том числе специализированных функций обработки сигналов, изображений, звука и прочее.
Octave написан с учётом совместимости с языком программирования MATLAB и одноимённым приложением математического моделирования (проприетарным), реализуя многие его возможности, хотя имеется и достаточно много отличий.
GNU Octave представляет интерактивный командный интерфейс (используется библиотека GNU Readline) и гибко настраиваемый C++ / QT графический интерфейс (GUI) для решения линейных и нелинейных математических задач, а также проведения других численных экспериментов.
Консольная версия GNU Octave удобна для пакетной обработки и работе в сценариях (скриптах), интерактивно или посредством привязки к языкам C (си) и C++, грамотно написанные скрипты будут запускаться и в MATLAB.
Графическая версия GNU Octave обеспечивает простой и удобный доступ к большинству функциональных возможностей консольной версии. Для построения графиков используется gnuplot, консольная утилита для создания 2D и 3D графиков.
GNU Octave имеет обширную справочную информацию (локальную и онлайн), как показала практика большинство студентов быстро схватывают основы и через несколько часов уже могут уверенно использовать приложение для проведения самых сложных расчётов.
Лицензия: GNU General Public License version 3.0 (GPLv3)
Источник: zenway.ru
Высшая математика командной строки — GNU Octave
2016-10-10 в 19:23, admin , рубрики: octave, математика, Программирование
Как я и обещал, перехожу от обзора программ замены калькулятора к более серьезным инструментам. Если помните схему из предыдущего поста, то во второй категории находились табличные: OpenOpffice / LibreOffice сотоварищи. Эту партию мы можем смело пропустить, так как к командной строке она не относится, к тому же, среди читателей Хабра трудно найти человека, который бы в них не разбирался. Поэтому перехожу сразу к третьей категории.
Специализированные математические программы, уровень студент+
- GNU Ocatve .
- Scilab .
- Maxima .
- R .
- Sage .
На первом месте в этом списке находится Octave , и это не случайность. Исследователи из Университета Мэриленда в США провели сравнительный анализ математических вычислений, используя MATLAB, Octave, SciLab и FreeMat в простом сценарии и в сложном. В первом случае решали систему линейных уравнений а в втором — конечно-разностную дискретизацию уравнения Пуассона в двухмерном пространстве. Основной вывод — GNU Octave справляется с задачами лучше остальных открытых математических пакетов, демонстрируя результат (страницы 23 и 25) сопоставимый с матлабовским.
Но сначала немного исторического контекста, чтобы понять, как закалялись математические программы с открытыми исходниками.
Догнать и перегнать MATLAB
Так сложилось, что коммерческие программы прибежали и первыми застолбили поляну математических вычислений. Уже с конца 1970-х гг. создатель языка программирования Клив Моулер распространяет MATLAB в университетах США, а в 1984-м вместе с двумя компаньонами переписывают его с Фортрана на Си и создают компанию The MathWorks. Примечательно, что ранние версии распространялись с открытым исходным кодом.
Это было-было, а MATLAB , каким мы его знаем сегодня — это ЯП высокого уровня с поддержкой 2D / 3D графики, разнообразными математическими функциями, интерактивной средой программирования, численных расчетов и решения задач. Внешние интерфейсы позволяют ему интегрироваться со сторонними приложениями и языками программирования. Более 1 000 000 инженеров и ученых по всему миру используют MATLAB и платят за это солидную денежку.
С большим опозданием в игру включаются программы с открытыми исходниками. Только в 1990-х появляются математические пакеты GNU Octave, Scilab и вступают в конкуренцию с лидером вычислительного программирования.
Задуманный изначально как программное пособие для проектирования химического реактора и названный в честь профессора химии Октава Левеншпиля, преподававшего автору математического пакета, Octave призван был заменить студентам Техасского Университета сложный в отладке Fortran . Версия 1.0 вышла в свет 17 февраля 1994 г. Проект стабильно развивается, и в июле нынешнего года зарелизился Octave 4.0.3 . Ждем ебилдов .
Основной миссией Octave была, и в обозримом будущем скорее всего так и останется, быть годной заменой MATLAB так же, как OpenOffice/LibreOffice замещает MS Office для тех, кто умеет считать копейку. Собственно, для этого Octave имеет совместимый с MATLAB синтаксис и набор функций. Более того, несовместимость с MATLAB считается багом, однако софтверная Фемида уже имеет подобный прецедент, и это не считается нарушением копирайта. В этой связи, можно считать Octave программным клоном. Правда о полной совместимости пока говорить не приходится, но работа в этом направлении не прекращается.
Octave написан на C++ , используя стандартную библиотеку шаблонов, имеет интерактивный командный интерфейс, поддерживает расширения — динамически загружаемые модули на родном языке или на C, C++, Fortran и др. Так же как и MATLAB , в алгебраических вычислениях Octave использует библиотеки Basic Linear Algebra Subroutines (BLAS) и Linear Algebra Package (LAPACK).
Установка
Установка Octave в Linux ничем не отличается от установки других программ. На Gentoo Linux запускаем:
$ sudo emerge -av octave
Дебианщики делают то же самое с помощью apt .
$ sudo aptitude install octave
Для SUSE и Arch тоже все очень просто, а вот пользователям Красной Шапки и CentOS придется чуток повозиться. Попытка установить Octave легким движением кисти завершается ошибкой, пакет в репозитариях не найден.
Благо, есть обходной путь. Нужно сперва установить пакет epel-release.
И только после этого yum install octave сработает.
Наконец, все готово и программа установлена.
Операции с матрицами
Не будем терять время и делать операции, которые можно повторить с помощью bc и awk , о ктоторых речь шла в прошлый раз. Поиграемся немного с матрицами.
Сперва простое транспонирование матрицы:
octave:1> A=[1 3 5; 2 4 6] A = 1 3 5 2 4 6 octave:2> A’ ans = 1 2 3 4 5 6
Попробуем решить систему линейных уравнений:
x + y + z = 9 2x — 4y — 3z = 1 3x + 6y — 5z = 0
Вбиваем матрицу A, вектор b и решаем уравнение Ax = b в матричном виде
octave:1> A=[1 1 1; 2 4 -3; 3 6 -5] A = 1 1 1 2 4 -3 3 6 -5 octave:2> b=[9; 1; 0] b = 9 1 0 octave:3> x=Ab x = 7.00000 -1.00000 3.00000
Находим детерминант и собственные значения матрицы.
octave:4> det (A) ans = -1.00000 octave:5> eig (A) ans = -2.88897 2.76372 0.12525
Комплексные числа тоже поддерживаются в вычислениях.
octave:6> A=[-3 0 2; 1 -1 0; -2 -1 0] A = -3 0 2 1 -1 0 -2 -1 0 octave:7> x=det (A) x = -6 octave:8> y=eig(A) y = -1.00000 + 1.41421i -1.00000 — 1.41421i -2.00000 + 0.00000i
Функции и переменные
В Octave переменные и функции создавать гораздо проще, чем, к примеру, в Java или C. На примере матриц, мы уже видели как объявлять переменные. Создания новой функции имеет следующий синтаксис
function [res1, res2, . resM] = имя_функции (arg1, arg2, . argN) тело функции endfunction
Как правило, новую функцию создают либо в отдельном файле, либо в скрипт-файле Octave
до первого ее вызова. Если предполагается использовать пользовательскую функцию в разных скрипт-файлах, то, конечно, предпочтительно создать ее в отдельном файле. В GNU Octave файлы с функциями имеют расширение .m и загружаются автоматически. Имя файла должно строго совпадать с именем функции.
Напишем функцию для решения квадратичного уравнения ax² + bx + c = 0
octave:9> function [x1,x2] = quadr(a, b, c) > D = sqrt(b^2-4*a*c); > x1 = (-b-D)/(2*a); > x2 = (-b+D)/(2*a); > endfunction octave:10> [y1,y2]=quadr(a, b, c) y1 = 2 y2 = 3
Графический интерфейс
Вообще-то, мы тут за математику командной строки гутарим, но пока непонятно как вывести на экран график функции. Впрочем, никакого секрета тут нет — для этих целей используется Gnuplot . Так можно изобразить Аттрактор Лоренца, установив дополнительный пакет odepkg .
Наиболее удобной графической оболочкой для работы с Octave является программа QtOctave . Последняя уже стабилизировалась и включена в состав пакета с момента выхода Octave 4.0 .
Что-же дальше?
Может возникнуть вопрос: а зачем вообще нужны открытые математические пакеты? Офисные приложения нужны всем, но ведь далеко не каждому необходимо сидя дома решать уравнения Пуассона, с помощью преобразования Лапласа. Для ВУЗ-ов MATLAB стоит значительно дешевле, нежели для физических лиц и коммерческих организаций. Коммерческие организации, если будет нужно, найдут денежные средства, а обычные люди пусть занимаются математикой в университетах или считают столбиком.
Конечно же, это ошибочное мнение. Научные расчеты, выполненные с использованием открытого ПО имеют дополнительный «уровень защиты», ведь при желании любой может повторить прогнать те же самые расчеты и проверить валидность результатов. Те же самые вычисления, выполненные на дорогущем ПО, частично отсекают возможность проверки результатов.
Проблема на самом деле гораздо шире (английский текст) и дело не только в открытых или проприетарных математических программах. Не секрет, что научные журналы как правило не требуют от авторов предоставить данные и методику, достаточные для гарантированного повтора результатов эксперимента, проверки модели. Особенно часто этим грешат экономисты и финансисты, попросту засекречивая свои данные. Проверка расчетов и выводов среди выборки из массива статей с «засекреченными» данными дала неожиданные результаты (английский текст). Наука, как и софт, должна быть открытой, вот почему открытые математические пакеты имеют ценность для всего общества.
Рекомендуется к прочтению
Кроме последней книги, остальные материалы, использованные в статье, можно без труда найти в интернете. Половина из приведенных выше ссылок ведут на английские страницы. Буду рад вкратце сообщить о чем идет там речь или помочь с переводом.
- GNU Octave 4.0.1 Manual
- Алексеев Е.Р., Чеснокова О.В GNU Octave для студентов и преподавателей, 2011
- Н. Б. Шамрай Краткое руководство по работе с пакетами GNU Octave и Gnuplot, 2011
- Jesper Schmidt HansenGNU Octave
Источник: www.pvsm.ru