Модуль решение задач программа

Скачать:

Предварительный просмотр:

«Муниципальное общеобразовательное учреждение

cредняя общеобразовательная школа

пгт Свеча Свечинского района Кировской области»

«Решение задач с модулем и параметрами»

Кузина Жанна Анатольевна,

МОУ СОШ пгт Свеча

Программа элективного курса составлена в соответствии с федеральным компонентом Государственного образовательного стандарта основного общего образования по предмету.

Программа выполняет две основные функции.

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного элективного курса.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Программа определяет перечень вопросов, которые подлежат обязательному изучению в школе и включает материал, создающий основу математической грамотности. Программа содействует сохранению единого образовательного пространства, не сковывая творческой инициативы учителя, и предоставляет возможности для реализации различных подходов к построению учебного курса.

Общая характеристика курса

Элективный курс предназначен для учащихся 9 классов, рассчитан на 17 часов.

Авторская программа курс 7-9 «Решение задач с модулем и параметром»

Актуальность данного курса определяет возникшие противоречия между 1) требованиями, предъявленными к знаниям и умениям по решению задач с параметрами и модулем и реальным уровнем их сформированности у учащихся образовательных учреждений; 2) необходимость усовершенствования обучения учащихся решению уравнений и неравенств с параметром и модулем и отсутствия научно-обоснованной методики обучения учащихся решению такого рода задач.

Вы уже знаете о суперспособностях современного учителя?

Тратить минимум сил на подготовку и проведение уроков.

Быстро и объективно проверять знания учащихся.

Сделать изучение нового материала максимально понятным.

Избавить себя от подбора заданий и их проверки после уроков.

Наладить дисциплину на своих уроках.

Получить возможность работать творчески.

Просмотр содержимого документа
«Авторская программа курс 7-9 «Решение задач с модулем и параметром»»

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.

1.1.КРАТКАЯ АННОТАЦИЯ

Основной задачей модернизации российского образования является повышение его доступности, качества и эффективности. Это предполагает точный и правильный подход ко всему образовательному процессу, приведение его в соответствие с требованиями времени.

Задачи с параметром и модулем традиционно представляют для учащихся сложность в логическом ,техническом и психологическом плане. Однако именно решение таких задач открывает перед учащимися большое число эвристических приемов общего характера ,применяемых в исследованиях на любом математическом материале.

Кроме того, задачи с параметром и модулем обладают высокой диагностической и прогностической ценностью. Мы считаем, что обучать массово школьников решению уравнений и неравенств с параметрами вряд ли целесообразно, решению таких задач надо обучать специально. Учащиеся образовательных учреждений традиционно знакомятся при изучении математики с графическими методами решения уравнений, неравенств и их систем. Однако, в последнее время содержащиеся в контрольно-измерительных материалах ГИА И ЕГЭ задания (так называемые комбинированные уравнения) решения которых требует применения только функционально – графического метода вызывает у учащихся затруднений.

Итак, актуальность данного курса определяет возникшие противоречия между 1) требованиями , предъявленными к знаниям и умениям по решению задач с параметрами и модулем и реальным уровнем их сформированности у учащихся образовательных учреждений; 2) необходимость усовершенствования обучения учащихся решению уравнений и неравенств с параметром и модулем и отсутствия научно-обоснованной методики обучения учащихся решению такого рода задач.

1.2. МЕСТО КУРСА В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ

Программа курса предназначена для учащихся 7-9 классов, рассчитана на 102 часа(34 часа в 7 классе,34часа в 8 классе, 34 часа в 9 классе). Преподавание курса предусматривается в рамках оказания платных дополнительных услуг.

Предлагаемый курс построен по принципам модульного дополнения действующего учебника А.Г Мордковича, естественным образом примкнет к курсу, углубляя и расширяя его. Курс предназначен для учащихся , выбравших для себя те области деятельности ,в которых математика играет роль аппарата, специфического средства для изучения закономерностей окружающего мира.

Читайте также:
Основное отличие mathcad от аналогичных программ

1.3 ЦЕЛИ И ЗАДАЧИ КУРСА

-совершенствование математической культуры и творческих способностей учащихся на основе коррекции базовых математических знаний

-расширение возможностей учащихся в отношении дальнейшего профильного образования

Задачи курса:

-формирование у учащихся целостного представления о заданиях с параметрами и модулем, их значение в разделе математики и связь с другими задачами

— формирование поисково-исследовательского метода , аналитического мышления, развитие памяти, кругозора, умение преодолевать трудности при решении сложных задач

-осуществление работы с дополнительной литературой

-акцентирование внимания учащихся на единых требованиях к правилам оформления различных видов заданий , включаемых в итоговую аттестацию в форме ГИА.

-охарактеризовать методы решения заданий с параметрами, выделить их гносеологические и деятельностные компоненты

-исследовать методические аспекты применения компьютерных технологий для обучения учащихся приемам решения уравнений и неравенств с параметрами и модулем.

1.4. ПРЕДПОЛАГАЕМЫЕ РЕЗУЛЬТАТЫ

Изучение данного курса дает возможность учащимся:

— использовать базы данных, т.е. сведения которые уже имеются у решавшего задачу;

-освоить технологию, позволяющую структурировать решение задач с параметром и модулем;

— познакомиться и использовать на практике нестандартные методы решения задач;

— повысить уровень своей математической культуры, творческого развития, познавательной активности;

— познакомиться с возможностями использования электронных средств обучения, в том числе Интернет-ресурсов, в ходе подготовки к итоговой аттестации в форме ГИА и ЕГЭ.

1.5.МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

В процессе изучения материала используются как традиционные формы обучения, так и самообразование, саморазвитие учащихся посредством самостоятельной работы с информационным и методическим материалом.

Занятия включают в себя теоретическую и практическую части, в зависимости от целесообразности. Основные формы проведения занятий: беседа, дискуссия, консультация, практическое занятие, защита проекта. Особое значение отводится самостоятельной работе учащихся , при которой учитель на разных этапах изучения темы выступает в разных ролях, четко контролируя и направляя работу учащихся.

Предполагаются следующие формы организации обучения: индивидуальная, групповая, коллективная, взаимное обучение, самообучение.

Средства обучения: дидактические материалы, творческие задания для самостоятельной работы, мультимедийные средства, справочная литература.

Технологии обучения: информационные, проектные, исследовательские. Занятия носят исследовательский характер. Предполагаются ответы на вопросы в процессе дискуссии, поиск информации по смежным областям знаний.

1.6. КОНТРОЛЬ РЕЗУЛЬТАТИВНОСТИ ИЗУЧЕНИЯ УЧАЩИМИСЯ ПРОГРАММЫ

Эффективность обучения отслеживается следующими формами контроля: самостоятельная работа, практикумы, тестирование.

Основные формы итогового контроля:

Практикумы по темам «Модели пространственных фигур. Позиционные построения» , «Метод ортогонального проектирования»,

« Координатно-векторный метод», «Вспомогательный параллелепипед», «Комбинации геометрических тел»; тестирование по теме «Итоговый контроль».

Показателем эффективности следует считать повышенный интерес к математике, творческую активность учащихся.

2.СОДЕРЖАНИЕ И ОРГАНИЗАЦИЯ ПРОЦЕССА ОБУЧЕНИЯ

1.Начальные представления о модуле ( 1 час)

Модуль действительного числа. Геометрическая интерпретация.

2.Способы решения заданий с модулем (3 часа)

Методы решения уравнений вида: |ах+в|=с, где с — любое действительное число, |ах+в|=|сх+д|.

Графическое решение неравенства |ах+в|≤с, где с – любое действительное число. Методы решения уравнений вида: |ах+в|+|сх+д|=т, |ах+в|+|сх+д|+пх=т. Методы решения неравенств вида: |ах+в|+|сх+д| сх+д|+ пхт. Методы решения неравенств вида: |ах+в|≤| сх+д|, |ах+в|≥| сх+д|, |ах+в|≤ сх+д, |ах+в|≥ сх+д. Метод замены переменной решения уравнений.

3. Задачи с модулем ( 18 часов)

Линейное уравнение, содержащее абсолютную величину. Преобразование выражений, содержащих модуль. Решение уравнений и неравенств вида |х|= а, |ах+в|=0, |ах+в|≤0. Графики функций, содержащих модули. Построение графиков функций вида у=|f(х)|, у=| ах+в|, y= f|x|, |y| =f(x) b |y|=|f(x).

Построение графиков функций, связанных с модулем. Квадратное уравнение и квадратное неравенство, содержащее абсолютную величину. Дробно- линейные уравнения, содержащие абсолютную величину .

Методы решения дробно-линейных уравнений с модулем

4.Начальные представления о параметре(2часа)

Понятие параметра. Примеры уравнений и неравенств с параметром. Понятие об уравнении с параметром. Что значит решить уравнение с параметром.

Читайте также:
Определите при каком наибольшем введенном значении переменной s программа выведет число больше 1000

5.Способы решения задач с параметрами (16 часов)

Аналитический способ, графический, функциональный и функционально- графический. Сочетание графического и аналитического методов. Способ определения множества значений функции. Способ определения условий существования корней уравнения y=f(x;а) относительно х (считая переменные у и а параметрами этого уравнения) при сформированных требованиях к переменной у. Решение относительно параметра а равенства y=f(x;а).

6. Задачи с параметрами ( 27 часов)

Линейные уравнения и неравенства с параметром. Приемы построения графиков линейных функций с параметром. Решение систем линейных уравнений с параметром. Квадратные уравнения и неравенства с параметром. Соотношение между корнями квадратных уравнений. Исследование квадратного трехчлена. Количество корней квадратного уравнения в зависимости от параметра.

Задачи с параметром ,решаемые с помощью теоремы Виета. Системы квадратных уравнений и неравенств. Уравнения с параметром, приводимые к квадратным. Методы решения дробных уравнений с параметром в общем виде.

7.Задачи условного параметрического анализа (5 часов)

Расположение корней квадратного трехчлена относительно заданного множества чисел. 6 типов расположения корней квадратного трехчлена. Метод интегрального анализа.

8.Полный параметрический анализ соотношений с модулем (3 часа)

Алгоритм метода интегрального анализа. Условные схемы. Основное назначение условных схем заключается в освобождении соотношения от функции модуля путем перехода к равносильному множеству соотношений.

9.Полный параметрический анализ рациональных соотношений( 3 часа)

5 схем «освобождения» от дроби. Несмотря на относительную громоздкость, логическая простота этих схем часто позволяет справиться с возникающими осложнениями.

10. Несколько решений одной задачи ( 8 часов)

Решение первое- метод интервалов;

решение второе- графическое в плоскости (х;а);

решение третье-метод нестандартных преобразований неравенств с модулем;

решение четвертое- графическое в плоскости (х;у);

решение пятое- относительно параметра.

Решения первое и третье являются аналитическими и обусловлены спецификой именно этой задачи и ей подобных. Учащийся после ознакомления со всеми решениями не должен устанавливать между методами какой-либо иерархии по эффективности их применения, поскольку, как известно, эффективность избранного пути решения зависит от постановки задачи.

3.УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Источник: kopilkaurokov.ru

Уравнения с модулем и параметрами

Урок 4: Уравнения с модулем

Урок 4: Уравнения с модулем

В этом уроке мы подробнее рассмотрим понятие модуля числа, также научимся решать уравнения, содержащие знак модуля. После этого будут изучены уравнения с параметрами.

План урока:

Модуль числа

Напомним, что такое модуль числа. Так называют значение числа, взятое без учета его знака. То есть модуль чисел 9 и (– 9) одинаков и равен 9. Для обозначения модуля применяют специальные прямоугольные скобки:

|2,536| = |– 2,536| = 2,536

Грубо говоря, операция нахождения модуля сводится к отбрасыванию у числа знака «минус», если он у него есть. Вообще, если число х неотрицательно, то его модуль |х| = х. Если же число отрицательно, то его модуль имеет противоположное значение: |х| = х. Математически это можно записать так:

1fhgh

Именно такое определение обычно и применяется в математике.

2gfdg

Модуль играет важную роль в математике. Дело в том, с его помощью удобно записывать расстояние между двумя точками на координатной прямой. Пусть на ней отмечены точки a и b. Расстояние между ними равно |a – b|, причем неважно, какое из этих чисел больше, а какое меньше:

3gfhgh

Также модуль возникает при извлечении квадратного корня из четной степени числа:

4gfdfg

В частности, если n = 1, получим формулу:

5bhgfh

Для того чтобы получить график функции у = |x|, сначала надо построить график функции без учета знака модуля:

6hgfgh

Далее следует выполнить преобразование. Те точки графика, которые располагаются выше оси Ох, остаются на своем месте. В данном случае это та часть графика, которая находится в I четверти. Те же точки, которые располагаются ниже оси Ох, должны быть симметрично (относительно этой самой оси Ох) отображены. В результате они окажутся выше оси Ох:

7hgfh

В результате получилась «галочка».

Пример. Постройте график ф-ции у = |х 2 – 4х + 3|

Решение. Для построения графика функции, содержащей модуль, сначала надо построить график для «подмодульного» выражения. Поэтому построим график у = х 2 – 4х + 3. Это квадратичная ф-ция, ее график – это парабола:

Читайте также:
Сделать замедленное видео программа

8fsdf

Часть графика, в промежутке от 1 до 3, находится ниже оси Ох. Чтобы построить ф-цию у = |х 2 – 4х + 3|, надо перевернуть эту часть графика:

9gdffg

Решение уравнений с модулем

Изучим простейший случай уравнения, содержащего модуль, когда вся его слева записано выр-ние в модульных скобках, а справа находится число. То есть уравнение имеет вид

где b – какое-то число, а у(х) – произвольная ф-ция.

Пример. Найдите корни ур-ния

|125x 10 + 97x 4 – 12,56х 3 + 52х 2 + 1001х – 1234| = – 15

Решение: Справа стоит отрицательное число. Однако модуль не может быть меньше нуля. Это значит, что у ур-ния отсутствуют корни.

Ответ: корни отсутствуют.

Если b = 0, то мы получим какое-то произвольное ур-ние у(х) = 0, у которого могут быть корни. Проще говоря, модульные скобки в таком случае можно просто убрать.

Пример. Решите ур-ние

Ясно, что подмодульное выр-ние равно нулю:

Наиболее интересен случай, когда b> 0, то есть в правой части стоит положительное число. Ясно, что тогда под модулем находится либо само это число b, либо противоположное ему число – b:

То есть мы получаем два различных ур-ния: у(х) = bи у(х) = – b.

Пример. Решите ур-ние

Решение. В правой части – положительное число, поэтому либо х = – 10, либо х = 10.

Пример. Решите ур-ние

Решение. Исходное ур-ние разбивается на два других ур-ния:

10х + 5 = 7 или 10х + 5 = – 7

10х = 2 или 10х = – 12

х = 0,2 или х = – 1,2

Пример. Найдите корни ур-ния

Решение. Снова заменим исходное равенство на два других:

x 2 – 2х – 4 = 4 или x 2 – 2х – 4 = – 4

Имеем два квадратных ур-ния. Решим каждое из них:

D = b 2 – 4ас = (– 2) 2 – 4•1•(– 8) = 4 + 32 = 36

Нашли корни (– 2) и 4. Решаем второе ур-ние:

х = 0 или х – 2 = 0

Получили ещё два корня: 0 и 2.

Встречаются случаи, когда в уравнении, содержащем знак модуля, под ним находятся обе части равенства:

Здесь возможны два варианта. Либо подмодульные выр-ния равны друг другу (у(х) = g(x)), либо у них противоположные значения (у(х) = – g(x)). То есть снова надо решить два ур-ния.

Пример. Решите ур-ние

|x 2 + 2x– 1| = |х + 1|

Решение. Выр-ния справа и слева (без знака модуля) либо равны, либо противоположны. Можно составить два ур-ния:

x 2 + 2x– 1 = х + 1 или x 2 + 2x– 1 = – (х + 1)

х 2 + х – 2 = 0 или х 2 + 3х = 0

Решим 1-ое ур-ние:

D = b 2 – 4ас = 1 2 – 4•1•(– 2) = 1 + 8 = 9

Теперь переходим ко 2-омуур-нию:

х = 0 или х + 3 = 0

Всего удалось найти 4 корня: (– 1), (– 2), 2 и 0.

Возможен случай, когда в левой части равенства находится модуль выр-ния, а в правой – обычное выражение, без модуля. Такое ур-ние имеет вид |у(х)| = g(x). Здесь также возможны два варианта: у(х) = g(x) или у(х) = – g(x). Однако следует учитывать ещё один факт. Модуль не может быть отрицательным, а потому должно выполняться нер-во g(x)⩾ 0. Но это неравенство не надо решать.

Достаточно просто подставить в него все полученные корни и проверить, справедливо ли нер-во.

Пример. Найдите решение уравнения, содержащего модуль:

|х 2 + 3,5х – 20| = 4,5х

Решение. Рассмотрим два отдельных равенства:

х 2 + 3,5х – 20 = 4,5х илих 2 + 3,5х – 20 = – 4,5х

х 2 – х – 20 = 0 или х 2 + 8х – 20 = 0

Решим каждое из полученных квадратных ур-ний.

D = b 2 – 4ас = 1 2 – 4•1•(– 20) = 1 + 80 = 81

D = b 2 – 4ас = 8 2 – 4•1•(– 20) = 64 + 80 = 144

Итак, получили 4 корня: (– 4), 5, (– 10) и 2. Однако правая часть исходного ур-ния, 4,5x, не может быть отрицательной, ведь модуль числа – это всегда неотрицательная величина:

Для х = – 4 и х = – 10 это условие не выполняется, поэтому эти корни должны быть исключены.

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru