Модели описания структур программ

Аннотация: Методологии моделирования предметной области. Структурная модель предметной области. Объектная структура. Функциональная структура. Структура управления.

Организационная структура. Функционально-ориентированные и объектно-ориентированные методологии описания предметной области. Функциональная методика IDEF. Функциональная методика потоков данных. Объектно-ориентированная методика.

Сравнение существующих методик. Синтетическая методика.

Структурная модель предметной области

В основе проектирования ИС лежит моделирование предметной области. Для того чтобы получить адекватный предметной области проект ИС в виде системы правильно работающих программ, необходимо иметь целостное, системное представление модели, которое отражает все аспекты функционирования будущей информационной системы. При этом под моделью предметной области понимается некоторая система, имитирующая структуру или функционирование исследуемой предметной области и отвечающая основному требованию – быть адекватной этой области.

Лекция 9: Модели, принципы и структура компонентных приложений

Предварительное моделирование предметной области позволяет сократить время и сроки проведения проектировочных работ и получить более эффективный и качественный проект. Без проведения моделирования предметной области велика вероятность допущения большого количества ошибок в решении стратегических вопросов, приводящих к экономическим потерям и высоким затратам на последующее перепроектирование системы. Вследствие этого все современные технологии проектирования ИС основываются на использовании методологии моделирования предметной области.

К моделям предметных областей предъявляются следующие требования:

  • формализация, обеспечивающая однозначное описание структуры предметной области;
  • понятность для заказчиков и разработчиков на основе применения графических средств отображения модели;
  • реализуемость, подразумевающая наличие средств физической реализации модели предметной области в ИС;
  • обеспечение оценки эффективности реализации модели предметной области на основе определенных методов и вычисляемых показателей.

Для реализации перечисленных требований, как правило, строится система моделей, которая отражает структурный и оценочный аспекты функционирования предметной области .

Структурный аспект предполагает построение:

  • объектной структуры, отражающей состав взаимодействующих в процессах материальных и информационных объектов предметной области;
  • функциональной структуры, отражающей взаимосвязь функций (действий) по преобразованию объектов в процессах;
  • структуры управления, отражающей события и бизнес-правила, которые воздействуют на выполнение процессов;
  • организационной структуры, отражающей взаимодействие организационных единиц предприятия и персонала в процессах;
  • технической структуры, описывающей топологию расположения и способы коммуникации комплекса технических средств.

Для отображения структурного аспекта моделей предметных областей в основном используются графические методы, которые должны гарантировать представление информации о компонентах системы. Главное требование к графическим методам документирования — простота. Графические методы должны обеспечивать возможность структурной декомпозиции спецификаций системы с максимальной степенью детализации и согласований описаний на смежных уровнях декомпозиции.

Язык Си для начинающих / #7 — Структуры данных

С моделированием непосредственно связана проблема выбора языка представления проектных решений, позволяющего как можно больше привлекать будущих пользователей системы к ее разработке. Язык моделирования – это нотация , в основном графическая, которая используется для описания проектов. Нотация представляет собой совокупность графических объектов, используемых в модели. Нотация является синтаксисом языка моделирования . Язык моделирования , с одной стороны, должен делать решения проектировщиков понятными пользователю, с другой стороны, предоставлять проектировщикам средства достаточно формализованного и однозначного определения проектных решений, подлежащих реализации в виде программных комплексов, образующих целостную систему программного обеспечения.

Графическое изображение нередко оказывается наиболее емкой формой представления информации. При этом проектировщики должны учитывать, что графические методы документирования не могут полностью обеспечить декомпозицию проектных решений от постановки задачи проектирования до реализации программ ЭВМ. Трудности возникают при переходе от этапа анализа системы к этапу проектирования и в особенности к программированию.

Главный критерий адекватности структурной модели предметной области заключается в функциональной полноте разрабатываемой ИС.

Оценочные аспекты моделирования предметной области связаны с разрабатываемыми показателями эффективности автоматизируемых процессов, к которым относятся:

  • время решения задач;
  • стоимостные затраты на обработку данных;
  • надежность процессов;
  • косвенные показатели эффективности, такие, как объемы производства, производительность труда, оборачиваемость капитала, рентабельность и т.д.

Для расчета показателей эффективности, как правило, используются статические методы функционально- стоимостного анализа ( ABC ) и динамические методы имитационного моделирования .

В основе различных методологий моделирования предметной области ИС лежат принципы последовательной детализации абстрактных категорий. Обычно модели строятся на трех уровнях: на внешнем уровне ( определении требований ), на концептуальном уровне ( спецификации требований ) и внутреннем уровне ( реализации требований ). Так, на внешнем уровне модель отвечает на вопрос, что должна делать система, то есть определяется состав основных компонентов системы: объектов, функций , событий, организационных единиц , технических средств.

На концептуальном уровне модель отвечает на вопрос, как должна функционировать система? Иначе говоря, определяется характер взаимодействия компонентов системы одного и разных типов. На внутреннем уровне модель отвечает на вопрос: с помощью каких программно-технических средств реализуются требования к системе? С позиции жизненного цикла ИС описанные уровни моделей соответственно строятся на этапах анализа требований , логического (технического) и физического (рабочего) проектирования. Рассмотрим особенности построения моделей предметной области на трех уровнях детализации.

Объектная структура

Объект — это сущность, которая используется при выполнении некоторой функции или операции (преобразования, обработки, формирования и т.д.). Объекты могут иметь динамическую или статическую природу: динамические объекты используются в одном цикле воспроизводства, например заказы на продукцию, счета на оплату, платежи; статические объекты используются во многих циклах воспроизводства, например, оборудование, персонал, запасы материалов.

Читайте также:
Программа на увеличение веса

На внешнем уровне детализации модели выделяются основные виды материальных объектов (например, сырье и материалы, полуфабрикаты, готовые изделия, услуги) и основные виды информационных объектов или документов (например, заказы, накладные, счета и т.д.).

На концептуальном уровне построения модели предметной области уточняется состав классов объектов, определяются их атрибуты и взаимосвязи. Таким образом строится обобщенное представление структуры предметной области.

Далее концептуальная модель на внутреннем уровне отображается в виде файлов базы данных, входных и выходных документов ЭИС. Причем динамические объекты представляются единицами переменной информации или документами, а статические объекты — единицами условно-постоянной информации в виде списков, номенклатур, ценников, справочников, классификаторов . Модель базы данных как постоянно поддерживаемого информационного ресурса отображает хранение условно-постоянной и накапливаемой переменной информации, используемой в повторяющихся информационных процессах.

Источник: intuit.ru

Основные модели построения информационных систем, их структура, особенности и области применения

Информационные системы обеспечивают сбор, хранение, обработку, поиск, выдачу информации , необходимой в процессе принятия решений задач из любой области.

Информационная система — взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели.

АИС – это человеко-машинная система, обеспечивающая автоматизированную подготовку, поиск и обработку информации.

Используется в рамках интегрированных сетевых, компьютерных и коммуникативных технологий для оптимизации экономической и другой деятельности в различных сферах управления.

Техническое обеспечение (ТО) — комплекс технических средств, предназначенных для работы информационной системы, а также соответствующая документация на эти средства и технологические процессы.

Информационное обеспечение (ИО) – совокупность единой системы классификации и кодирования информации, унифицированных систем документации, схем информационных потоков, циркулирующих в организации, а также методология построения баз данных.

Назначение ИО состоит в своевременном формировании и выдаче достоверной информации для принятия управленческих решений.

· Системы обработки данных

· Системы бухгалтерского учета и т.д.

Функциональная подсистема

Математическое и программное обеспечение (МО, ПО) — совокупность математических методов, моделей, алгоритмов и программ для реализации целей и задач информационной системы, а также нормального функционирования комплекса технических средств.

Организационное обеспечение (ОО) -совокупность методов и средств, регламентирующих взаимодействие работников с техническими средствами и между собой в процессе разработки и эксплуатации информационной системы.

Правовое обеспечение (Пр.О) — совокупность правовых норм, определяющих создание, юридический статус и функционирование информационных систем, регламентирующих порядок получения, преобразования и использования информации.

Главная цель Пр.О — укрепление законности.

Модели ИС

Наши представления о реальных системах носят приближенный, модельный характер.

Описывая в какой-либо форме реальную систему, мы создаем ее информационную модель . Существуют различные варианты модельного описания систем.

Модель «Черного ящика»

Всякая система – это нечто цельное и выделенное из окружающей среды. Система и среда взаимодействуют между собой.

Вход системы – это воздействие на систему со стороны внешней среды, а выход – это воздействие, оказываемое системой на окружающую среду.

Модель «черного ящика» используется в тех случаях, когда внутреннее устройство системы не представляет интереса, но важно описать ее внешние взаимодействия.

В любой инструкции по использованию бытовой техники дается описание работы с ней на уровне входов и выходов: как включить, как регулировать работу, что получим на выходе.

Такое представление может быть вполне достаточным для пользователя данной техникой.

• модель черного ящика компьютера

Разумеется, такой модели недостаточно для того, чтобы понять, как функционирует школа.

И все-таки она дает более подробное представление, чем модель «черного ящика».

Модель состава системы

Модель состава системы дает описание входящих в нее элементов и подсистем, но не рассматривает связей между ними.

Модель состава системы «Школа»
Модель состава компьютера

Структурная модель системы

Такую модель часто называют

структурной схемой.

На структурной схеме отражается состав системы и ее внутренние связи.

Наглядным способом описания структурной модели системы являются графы .

Структурная модель компьютера

Здесь стрелки обозначают информационные связи между элементами системы. Направление стрелок указывает на направление передачи информации.

Граф-модель компьютера (со связью по управлению)

Структурную модель удобно изображать в виде графа, который отображает элементный состав системы и структуру связей между ее элементами.

Местность и автомобильные дороги между группами застроек А, Б, В, Г, Д.

Это не карта местности. Здесь не выдержаны направления по сторонам света, не соблюден масштаб. На этой схеме отражен лишь факт существования пяти поселков и дорожной связи между ними.

Построение модели для ИС «Студенты»

Модель «черного ящика»
Модель состава системы «Студенты»
Модель структуры системы «Студенты»

Модель объекта

Она представлена в виде информации, что описывает существенные для конкретного случая параметры и переменные, связи между ними, а также входы и выходы для данных, при подаче на которые можно влиять на получаемый результат. Их нельзя увидеть или потрогать. В целом они не имеют материального воплощения, поскольку строятся на использовании одной информации.

Сюда относятся данные, что характеризуют состояния объекта, существенные свойства, процессы и явления, а также связь с внешней средой. Это процесс называется описанием информационной модели. Это самый первый шаг проработки.

Читайте также:
Как сделать игру на весь экран программа

Полноценной информационной моделью является обычно сложная разработка , которая может иметь много структур , что в рамках статьи сведены в три основных типа:

1. Описательная . Сюда относятся модели, которые создаются на естественных языках. Они могут иметь любую произвольную структуру, которая удовлетворит составляющего их человека.

2. Формальная . Сюда относят модели, которые создаются на формальных языках (научных, профессиональных или специализированных). В качестве примеров можно привести такое: все виды таблиц, формул, граф, карт, схемы и прочих подобных структурных формаций.

3. Хроматические . Сюда относят модели, которые были созданы с применением естественного языка семантики цветовых концептов, а также их онтологических предикатов. Под последними понимают возможность распознавания значений цветовых канонов и смыслов. В качестве примера хроматических моделей можно навести те, что были построены с использованием соответствующей теоретической базы и методологии.

Основной составляющей являются данные, их структура и процедура обработки . Развивая мысль, можно дополнить, что информационная модель является схемой, в которой описана суть определённого объекта , а также все необходимые для его исследования процедуры . Для более полного описания характеристик используют переменные. Они замещают атрибут цели, которая прорабатывается. И здесь имеет значительную важность структура информационной модели.

Опыт практического применения АИС показал, что наиболее точной, соответствующей самому назначению АИС следует считать классификацию по степени сложности технической, вычислительной, аналитической и логической обработки используемой информации. При таком подходе к классификации можно наиболее тесно связать АИС и соответствующие информационные технологии.

Соответственно можно выделить следующие виды АИС :

· автоматизированные системы обработки данных (АСОД);

· автоматизированные информационно-поисковые системы (АИПС);

· автоматизированные информационно-справочные системы (АИСС);

· автоматизированные информационно-логические системы (АИЛС);

· автоматизированные рабочие места (АРМ);

· автоматизированные системы управления (АСУ);

· автоматизированные системы информационного обеспечения (АСИО);

· экспертные системы (ЭС) и системы поддержки принятия решений.

Методологически важно наряду с рассмотренными моделями среды ИС предложить модель создания ИС, которая имела бы те же аспекты функциональных групп компонентов (пользователи, функции, данные, коммуникации). Такой подход обеспечит сквозной процесс проектирования и сопровождения на всех стадиях эксплуатации ИС, а также возможность обоснованного выбора стандартов на разработку систем и документирование проектов.

Определение » компания » является сложной онтологической (понятийной) структурой , состоящей из определенной совокупности сущностей и взаимосвязей . Взаимодействия между ее элементами, определяемые бизнес-логикой и закрепленные в наборе бизнес-правил , и являются деятельностью компании. Информационная система «отражает» логику и правила, организуя и преобразуя информационные потоки, автоматизирует процессы работы с данными и информацией и визуализирует результаты в виде наборов отчетных форм.

Поэтому для начала следует создать бизнес-модель предприятия, являющуюся отображением предприятия и его информационно-управляющей системы.

При создании модели формируется «язык общения» руководителей предприятия, консультантов, разработчиков и будущих пользователей, позволяющий выработать единое представление о том, ЧТО и КАК должна делать система управления предприятием (корпоративная система управления).

Источник: dzen.ru

Модели описания структур программ

11. Структурные и функциональные модели. Программирование как моделирование.

Функциональная модель предназначена для изучения особенностей работы (функционирования) системы и её назначения во взаимосвязи с внутренними и внешними элементами.

Функция — самая существенная характеристика любой системы, отражает её предназначение, то, ради чего она была создана. Подобные модели оперируют, прежде всего, с функциональными параметрами. Графическим представлением этих моделей служат блок-схемы. Они отображают порядок действий, направленных на достижение заданных целей (т. н. функциональная схема). Функциональной моделью является абстрактная модель.

Четкого определения структурной модели не существует. Так, под структурной моделью устройства могут подразумевать:

· структурную схему, которая представляет собой упрощенное графическое изображение устройства, дающее общее представление о форме, расположении и числе наиболее важных его частей и их взаимных связях;

· топологическую модель, которая отражает взаимные связи между объектами, не зависящие от их геометрических свойств.

Под структурной моделью процесса обычно подразумевают характеризующую его последовательность и состав стадий и этапов работы, совокупность процедур и привлекаемых технических средств, взаимодействие участников процесса.

Например, — это могут быть упрощенное изображение звеньев механизма в виде стержней, плоских фигур (механика), прямоугольники с линиями со стрелками (теория автоматического управления, блок-схемы алгоритмов), план литературного произведения или законопроекта и т. д. Степень упрощения зависит от полноты исходных данных об исследуемом устройстве и потребной точности результатов. На практике виды структурных схем могут варьироваться от несложных небольших схем (минимальное число частей, простота форм их поверхностей) до близких к чертежу изображений (высокая степень подробности описания, сложность используемых форм поверхностей).

Возможно изображение структурной схемы в масштабе. Такую модель относят к структурно-параметрической. Её примером служит кинематическая схема механизма, на которой размеры упрощенно изображенных звеньев (длины линий-стержней, радиусы колес-окружностей и т. д.) нанесены в масштабе, что позволяет дать численную оценку некоторым исследуемым характеристикам.

Для повышения полноты восприятия на структурных схемах в символьном (буквенном, условными знаками) виде могут указывать параметры, характеризующие свойства отображаемых систем. Исследование таких схем позволяет установить соотношения (функциональные, геометрические и т. п.) между этими параметрами, то есть представить их взаимосвязь в виде равенств f (x1, х2, …) = 0, неравенств f (x1, х2, …) > 0 и в иных выражениях.

Читайте также:
Как перенастроить программы в телевизоре Самсунг

Состояние прототипа – это совокупность свойств его составных частей, а также его собственных. Состояние – «моментальная» фотография прототипа для выбранного момента времени. С течением времени состояние может изменяться – тогда говорят о существовании процесса. В соответствии со сказанным возможно построение модели состояния и модели процессов.

Модели первого типа называются структурными моделями, второго типа – функциональными моделями. Примерами структурных моделей являются чертеж какого-либо устройства, схема компьютера, блок-схема алгоритма и пр. Примерами функциональных моделей являются макет, демонстрирующий работу чего-либо; протез. Важнейшим классом функциональных моделей являются модели имитационные.

По характеру отображаемых свойств объекта ММ делятся на структурные и функциональные.

Структурные ММ предназначены для отображения структурных свойств объекта. В свою очередь, структурные ММ делятся на топологические и геометрические.

Описание математических соотношений на уровнях структурных, логических и количественных свойств принимает конкретные формы в условиях определенного объекта.

Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в технологических системах при их функционировании.

Обычно функциональные ММ представляются системой уравнений, описывающих фазовые переменные, внутренние, внешние и выходные параметры.

В проектных процедурах, связанных с функциональным аспектом проектирования, как правило, используются ММ, отражающие закономерности процессов функционирования объектов, т.е. функциональные модели. Типичная функциональная модель представляет собой систему уравнений, описывающих либо электрические, тепловые, механические процессы, либо процессы преобразования информации.

В то же время в процедурах, относящихся к конструкторскому аспекту проектирования, преобладает использование математических моделей, отражающих только структурные свойства объекта, например его геометрическую форму, размеры, взаимное расположение элементов в пространстве, т. е. структурные модели. Структурные модели чаще всего представляются в виде графов, матриц инциденций и смежности, списков и т. п. [ 38 ].

Как правило, функциональные модели более сложные, поскольку в них отражаются также сведения о структуре объектов. Однако при решении многих задач конструирования использование сложных функциональных моделей неоправданно, так как нужные результаты могут быть получены на основе более простых структурных моделей. Функциональные модели применяют преимущественно на завершающих этапах верификации описаний объектов, предварительно синтезированных с помощью структурных моделей.

Проектирование технологического процесса изготовления изделия также характеризуется различными иерархическими уровнями : самый высокий уровень — разработка принципиальной схемы технологического процесса, который включает отдельные этапы, причем этап может содержать несколько или одну операцию. В данном случае оператором будет являться этап технологического процесса. Моделирование технологических процессов разного уровня происходит с помощью различных моделей и алгоритмов.

Программирование как моделирование

Описание реальных объектов и процессов в некоторых формальных терминах принято называть моделированием, а полученную абстракцию — моделью. Модели различают по способу их описания.

Например, вербальные модели (описание текстом), математические модели (описание при помощи математического аппарата), информационные модели (знаковое или символьное описание информационных процессов). Особенностью компьютерного математического моделирования является перенесение математической модели в среду ЭВМ и переход от аналитических методов к численным методам.

На практике это означает дискретизацию непрерывных переменных и функций, а также замену всех бесконечно малых и бесконечно больших величин некоторыми конечными величинами. Такое представление позволяет описать и перенести любые математические модели в среду некоторого языка программирования или в среду готовой компьютерной программы для дальнейшей работы с ней. В экономических задачах информация представляется чаще всего в табличных данных, то есть уже дискретная. Обрабатывая ее статистическими и эконометрическими методами, получаем математическую модель. В силу больших массивов данных их обработка и анализ модели не возможны без компьютерных технологий.

Составление любой модели проходит несколько этапов. На первом этапе выполняется словесная постановка задачи. Здесь определяется объект модели, начальные условия и что должно получиться в результате. Ключевая фраза: «Я хочу, чтобы. ». Следующим этапом является формализация, где уясняются существенные свойства объекта и их взаимосвязь.

Так как различные свойства существенны в различной степени для данной модели, то часть из них отбрасывается как несущественные. В силу последнего замечания адекватность модели реальности будет в той или иной степени приближенной.

Дальнейший этап состоит в поиске математического описания модели или в выборе из нескольких возможных. Это самый сложный и ответственный момент в моделировании, так как в модели может присутствовать достаточно большое количество связей, частей, переменных и выбор неправильного математического описания для любой из них может привести к полной или частичной неработоспособности модели в целом. Для описания взаимодействий выбираются уже известные функциональные зависимости, то есть исследованные ранее, или табличные описания — статистическую зависимость.

Последний этап состоит в программировании, то есть в перенесении полученной математической модели в среду ЭВМ. На этом этапе выбирается конкретная среда работы, или среда языка программирования, или среда существующего приложения, или то и другое. Создается, собственно, модель в виде программы или пользовательского документа. Проводятся тестирования модели с целью выяснения работоспособности и степени адекватности полученной модели. По завершению создаются инструменты работы с моделью (интерфейс).

Приведенное выше разделение моделирования на этапы носит в известной степени условный характер, так как они могут пересекаться, дополнять друг друга.

Источник: ek-ek.jimdofree.com

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru