Нобелевская премия по физике за 2017 год ожидаемо досталась Кипу Торну, Райнеру Вайссу и Берри Беришу за экспериментальное обнаружение гравитационных волн на лазерно-интерферометрических приборах LIGO. Этот успех (а обнаружение гравитационных волн (ГВ) от двух сливающихся черных дыр первый раз произошло 14 сентября 2015 года) стал плодом примерно 50-летнего развития техники для детектирования ГВ. В результате этого развития инструмент LIGO обладает леденящими характеристиками, впрочем, никакие человеческие эпитеты не передают уровня прецизионности этой машины.
Лазерно-интерферометрическая гравитационная обсерватория LIGO в Ливингстоне, Луизиана, США.
Сегодня поговорим об инженерном устройстве LIGO. Но прежде — о гравитационных волнах вообще.
Гравитационную волну излучает любая материя, движущаяся с асимметричным ускорением. Для возникновения волны существенной амплитуды необходимы чрезвычайно большая масса излучателя или/и огромные ускорения, так как амплитуда гравитационной волны прямо пропорциональна первой производной ускорения и массе генератора. Какие-то значимые мощности ГВ-излучения получаются в основном от сливающихся черных дыр и нейтронных звезд, а также во время асимметричных взрывов сверхновых звезд, при этом идеальный вариант — пара черных дыр, вращающихся вокруг друг друга на очень тесной орбите. Для вращающихся пар частота излучаемых гравитационных волн равна удвоенной частоте обращения системы двух тел. Для наиболее часто встречающихся во Вселенной событий, сопровождающихся излучением ГВ, характерны частоты от долей герца до сотен герц, а значит длины волн от от сотен до миллионов километров.
сколько ПЛАТЯТ ЗА ЧЕКИ, ЕдаДил Qrooto InShoper Дисконто, обзор инструкция
Симуляция излучения гравитационных волн сливающейся парой черных дыр.
Характерный паттерн от двух сливающихся черных дыр — орбита быстро уменьшается из-за излучения момента вращения в виде гравитационных волн и в конце концов они сливаются, оставляя «послезвон» — сброс искажений формы в виде гравитационных волн.
Гравитационно-волновая астрономия — давний предмет вожделения специалистов. Она позволяет изучать объекты, слабо проявляющие себя в электромагнитном излучении, а значит недоступные современной астрономии. За подробностями советую прочесть “ Гравитационно-волновое небо ”
Как можно обнаружить гравитационную волну? К сожалению, для этого нет простых способов. В LIGO используется свойство гравитационных волн переодически изменять расстояния между двумя тестовыми массами (и тестовые массы здесь ключевой детектор), только вот изменения эти очень невелики. Если мы раздвинем две тестовые массы, скажем, на километр, то все что мы увидим — колебания расстояния между ними с амплитудой ~ 10-21 , т.е. около 1/10000 размера протона, и одной миллиардной размера электронной оболочки атома. Если увеличить линейку до миллиона километров, ситуация кардинально не улучшится (даже если протянуть линейку до Плутона, то ее точность должна быть в районе нанометров).
Отклонение тестовых масс (черные квадраты) при прохождении гравитационной волны от своих изначальных позиций (пустые квадратики).
Впрочем, если перейти от материальных линеек к световым, то можно достичь некого прогресса. Интерферометр Майкельсона использует деструктивную интерференцию (т.е. гашение двух волн в противофазе) прошедших через два измерительных плеча. Если длина плеч перестает быть равными, то на детекторе начинает появляться свет, причем для идеального, не-квантового света мы можем измерить таким образом любую величину смещения зеркал.
Принцип влияния проходящей ГВ на интерферометр майкельсона и возникновение сигнала при разбалансировке размеров плеч.
На практике, лабораторные интерферометры без особых проблем измеряют изменения расстояний в десятки нанометров, а передовые устройства — доли нанометров. Даже если сделать интерферометр с плечами ~4 км (а это оптимальная длина по бюджету шумов, о чем мы поговорим дальше) и с точность 0,1 нм, то это всего лишь ~10^-14 — т.е. все еще в 10 миллионов раз меньшая чувствительность, чем надо!
Добраться до необходимой прецизионности хотя бы в теории помогает использование оптических резонаторов Фабри-Перо. Вставка такого резонатора в длинное измерительное плечо интерферометра заставляет свет многократно отражаться между двумя зеркалами, нанесенными на тестовые массы. Фактически это удлиняет эффективную длину интерферометра в несколько сот раз (для LIGO это значение около 300). Далее этот трюк повторяется путем вставки отражателей в вход и выход интерферометра — фотоны, выскакивающие с резонаторов в длинных плечах, многократно отражаются обратно и постепенно набирают технически измеряемую разность хода лучей.
Принципиальная схема LIGO: ETM — внешние тестмассы, ITM — внутренние, вместе они образуют резонатор. CP — термокомпенсирующие пластины, BS — делитель луча. PRM и SRM — системы рециклирования исходных фотонов и фотонов полезного сигнала, PD — фотодиод, GW readout — система считывания сигнала гравитационных волн.
Впрочем, между идеей и реализацией в данном случае лежит пропасть. Беря в руки измерительный прибор такой прецизионности, вы обнаружите десятки источников шумов, которые в тысячи и миллионы раз превосходят полезный сигнал. Впрочем, говоря о миллионах я слишком преуменьшаю. Сейсмические колебания по амплитуде превосходят сигнал ГВ на 11 порядков (т.е. в 100 миллиардов раз).
Вибрация зеркал без демпфирования, приведенная к измеряемой характеристике (расстоянию между тестовыми массами) в месте установки LIGO.
Борьба с этими шумами представляет собой невероятную инженерно-физическую сагу, растянувшуюся на десятилетия. Рассказывая о этой борьбе, удобно все приводить в систему, в которой записывается полезный сигнал — т.е. в виде амплитуды колебаний плеча интерферометра, сравнивая ее с заветной чувствительность 10-21.
Трубы вакуумной системы имеют диаметр 1,24 метра, в частности здесь изображена угловая (центральная) станция LIGO Hanford. Вправо уходит 4 километровое измерительное плечо.
Первым инженерным чудом, на котором базируется LIGO, является вакуумная система. Объем оптической системы, подвергающуюся вакуумированию очень велик — около 10 тысяч метров3, при этом уровень вакуума — 10-9 торр (~10-7 Па — это разряжение круче, чем в вакуумной камере ИТЭР ). Вакуум нужен, прежде всего, для изоляции оборудования от акустических вибраций, и во вторую очередь — для того, чтобы избавиться от случайных искажений фазы лазерного луча на молекулах газов, что дало бы ненужный шум на приемном детекторе. До создания прототипов вакуумных объемов LIGO не было даже понятно, удастся ли выдержать такой вакуум в таком объеме — до LIGO никто этого не достигал. Для откачки используется набор из механических форвакуумных насосов, турбомолекулярных насосов, криоловушек и ионных насосов. Всего достижение рабочего вакуума с промежуточным отжигом в LIGO занимает 40 суток.
Пост измерения качества вакуума и состава остаточных газов.
Внутри вакуумной системы находятся основные составляющие — оконечные тестовые массы ETM (“дальние” зеркала плеч), внутренние тестовые массы ITM, делитель луча BS, камеры регенерации входного луча и выхода сигнала PRC и SRC, системы очистки пространственных мод (о модах дальше) лазерного излучения. При этом сам основной лазер расположен снаружи, на практически обычном лабораторном оптическом столе.
Говоря про лазеры LIGO необходимо отметить, что в одной и той же оптической системе сосуществуют сразу два — основной суперстабильный лазер с длиной волны 1064 нм и вспомогательный с длиной волны 532. Последний используется для измерения расстояния между зеркалами и активной коррекции положения оптики, нужной для ввода резонаторов Фабри-Перо в режим сохранения света.
Основной 200-ваттный измерительный лазер LIGO (установленный в 2010 году, до этого был гораздо менее мощный лазер). Черная пирамида справа — перископ, отправляющий лазерный луч в интерферометр.
Основной лазер 1064 нм расположен на обычном оптическом столе и представляет собой ультрастабильный по частоте и амплитуде (10-7 и 10-9 соответственно) лазер мощностью 220 ватт на столе и 180 ватт после системы очистки мод. Модами называются провольные и поперечные стоячие волны, возникшие в пучке лазера, так вот — для LIGO нужен луч лазера с только основной TEM00 модой, т.е. где фактически пространственно полностью однородный пучок.
Детальное изображение выходной части лазера, включающее в себя зависимый усилитель луча с 35 до 220 Вт, диагностическую сборку, предварительный очиститель мод PMC, и образцовый резонатор для подстройки частоты лазера.
Кстати, обратите внимание на мощность. 200-ваттные постоянные лазеры скорее ассоциируются с резкой материалов, чем с тонкими физическими экспериментами. Однако в случае LIGO точность определения координат зеркал растет как корень из мощности лазера, поэтому в плечах интерферометра курсирует захваченная мощность в сотни киловатт лазерного света (планируемая — до 830 кВт!). Отрицательным эффектом от сумасшедшей мощности являются искажения оптики от нагрева — и это в лазерной системе с максимальными требованиями в мире. Но об этом мы еще поговорим.
Для получения стабильной затравочной частоты используется специальный непланарный лазерный резонатор — частота планарного лазера слишком зависит от расстояния между торцевыми зеркалами
Сгенерированный лазерный луч подается внутрь вакуумной системы, где он проходит входной очиститель пространственных мод, резонатор рециркулирующий входную мощность и через делитель луча попадает в измерительные плечи. По мере прохода системы растут требования к неподвижности зеркал, ведь их движения от вибраций можно принять за сигнал от гравитационной волны!
Через такой порт излучение заводится внутрь вакуумной системы.
В цифрах это выглядит так — в диапазоне максимальной чувствительности интерферометра (от 30 до 600 гц) амплитуда шумовых колебаний зеркал должна составлять от 10^-13 м до 10^-19 м. При том, что обычный уровень вибраций таких зеркал без каких-то в систем подавления в местах постройки интерферометров (Хэнфорд и Ливингстон) составляет от ~10^-10 метра. Разница в 9 порядков между “есть” и “нужно” настолько велика, что потребовалось около 30 лет разработок и исследований, чтобы ее преодолеть.
Внешний вид подвески тестовых масс вводит в заблуждение: металлическая рама тут для вспомогательных элементов, она не держит саму тестовую массу (розовый диск внизу)
Создатели LIGO говорят, что без его фантастических демпфирующих вибрацию подвесок интерферометр способен фиксировать велосипедистов в километрах от установки, чувствовать дрожание от прибоя в тысячах километрах, более того — LIGO чувствителен к приходу и уходу тайфунов, вода в облаках которых вызывает колебания гравитационного поля(!).
В создании подвесок, ослабляющих воздействие среды в триллион раз, использовались 3 подхода. Первый, классический — это создание максимально жестких конструкций первых стадий подвески, что минимизирует амплитуду вибраций. Второй подход также известен борцам с вибрацией — это активные системы компенсации, движущие платформу в противоположном к вибровоздействию направлении, что позволяет где-то еще в 1000 раз снизить амплитуду вибраций. Наконец, и в этом уникальное решение LIGO — это использование на последних стадиях (подвеска ETM/ITM имеет 7 стадий виброподавления) маятников.
Активная изоляция последний версии LIGO (справа) — прецизионные гидравлические приводы вакуумной камеры, двухступенчатый активный (с электроприводами) подавитель вибрации и 4-ступенчатый маятник.
Источник: dzen.ru
Ligos Indeo Codec 5.11 Indeo Audio 2.5 скачать download (МУЛЬТИМЕДИА — Кодеки)
Программный пакет, включающий в себя наиболее известные кодеки, необходимые для воспроизведения файлов наиболее популярных аудио– и видеоформатов: DivX Pro, XviD, Ligos Indeo XP, AC3Filter, Fraunhoffer IIS Mpeg Layer–3 DirectShow Decoder.
Кодек Indeo Video был разработан Intel, но позже его доработкой занялась корпорация Ligos. Последняя версия кодека Indeo XP включает в себя Indeo Video 5.2 и Indeo Audio 2.5, однако она стала платной и ее предлагается купить на сайте Ligos.
Пакет кодеков, в значительной степени увеличивающий количество форматов, поддерживаемых проигрывателем Windows Media Player. Обеспечивает воспроизведение мультимедийных файлов таких форматов, как VCD/DVD, RealMedia, QuickTime, MPEG–2, MPEG4.
Мнения и комментарии к данной программе:
Комментариев к данной программе пока нет. Вы можете быть первым.
Источник: www.banksofta.ru
Что за сайт ligos.ru?
Сервис проверяет работает сайт ligos.ru или нет. Обратите внимание, сайт может работать, но содержать текст «Технические работы».
Статус сайта может быть не работает, если сайт блокирует IP адреса России.
Статус сайта | Проверяем работает сайт или нет.. |
Дата проверки | |
Код ответа |
О сайте
- Рекомендуют: 0
- Не рекомендуют: 0
- Не работает: 0
Плюсы сайта
- Домен зарегистрирован более 1 года
Минусы сайта
- Сайт может находиться не в России. Код страны: NL
Информация о домене
В таблице ниже представлены данные по домену ligos.ru и комментарии, которые помогут вам лучше понять информацию.
Владелец домена и сайта могут быть разные люди.
ID компании, которая владеет контактной информацией о владельце домена.
Дата запуска сайта может отличаться от даты регистрации домена.
Рекомендации по безопасным покупкам
Если сайт ligos.ru оказывает услуги, продает товары или предлагает вам сделать оплату с помощью банковской карты, обратите внимание на следующие моменты:
- Желательно, чтобы на сайте были контактные данные. Номер телефона, юридический адрес. По номеру телефона должен отвечать оператор, а не голосовое сообщение.
- Если проводите оплату, обратите внимание на Получателя платежа и Комментарий по услуге.
- Вы можете попросить ссылку на договор, если она не добавлена на сайт.
- Желательно, чтобы вы знали ИНН организации или физического лица, перед проведением оплаты за услугу или товар.
Добавить отзыв
Ваш отзыв будет первым и он поможет другим пользователям узнать о сайте.
В отзыве нужно писать, каким был ваш опыт взаимодействия с сайтом. Мы не публикуем отзывы без описаний. Отзыв будет опубликован после проверки.
Источник: softroad.ru