Центральное процессорное устройство (CPU), более известное как «процессор» — интегральная схема, исполняющая машинные инструкции (код программ). Процессор — это мозг компьютера, который отвечает за скорость выполнения операций.
Роль центрального процессора состоит в том, что он выполняет программы, находящиеся в основной памяти компьютера. Для этого: он вызывает их из памяти, определяет их тип, расшифровывает код программ на язык, понятный компьютеру (машинный язык) и исполняет код программ.
Центральный процессор состоит из транзисторов и логических элементов. Транзисторы — это компоненты процессора, которые останавливают или разрешают прохождение тока. Информация для компьютера состоит из нулей и единиц. Ноль соответствует состоянию, когда нет тока, транзистор закрыт, а когда напряжение в транзисторе достаточное — единица. Такое состояние (0 или 1) называется битом.
Бит — это минимальная единица в компьютере, из которой складываются байты, мегабайты, гигабайты и так далее. А в основе всей этой информации находятся транзисторы.
Как устроен компьютер! Простыми словами. Коротко и ясно.
С свою очередь, логические элементы служат для включения и выключения транзисторов, что позволяет упорядочить их работу.
Сами микросхемы процессора сделаны из кремния, так как он этот элемент является полупроводником и может обеспечивать как высокое, так и низкое электрическое сопротивление.
Кремниевая пластина, из которой вырезаются процессоры
Компоненты соединены шиной, которая представляет собой набор параллельно связанных проводов для передачи адресов, данных и управляющих сигналов.
Если вам понравилась статья, делитесь ей с друзьями в социальных сетях и подписывайтесь на канал — это мотивирует меня делать качественный и интересный материал 🙂
Источник: dzen.ru
Процессор и его компоненты
Центральный процессор (ЦП) – основной компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет процессом вычислений и координирует работу всех устройств ПК.
Чем мощнее процессор, тем выше быстродействие ПК.
Центральный процессор часто называют просто процессором, ЦПУ (Центральное Процессорное Устройство) или CPU (Central Processing Unit), реже – кристаллом, камнем, хост-процессором.
Современные процессоры являются микропроцессорами.
Микропроцессор имеет вид интегральной схемы – тонкой пластинки из кристаллического кремния прямоугольной формы площадью в несколько квадратных миллиметров, на которой размещены схемы с миллиардами транзисторов и каналов для прохождения сигналов. Кристалл-пластинка помещен в пластмассовый или керамический корпус и соединен золотыми проводками с металлическими штырьками для подсоединения к системной плате ПК.
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Самый странный ремонт ПК
Рисунок 1. Микропроцессор Intel 4004 (1971 г.)
Рисунок 2. Микропроцессор Intel Pentium IV (2001 г.). Слева – вид сверху, справа – вид снизу
ЦП предназначен для автоматического выполнения программы.
Устройство процессора
Основными компонентами ЦП являются:
- арифметико-логическое устройство (АЛУ) выполняет основные математические и логические операции;
- управляющее устройство (УУ), от которого зависит согласованность работы компонентов ЦП и его связь с другими устройствами;
- шины данных и адресные шины;
- регистры, в которых временно хранится текущая команда, исходные, промежуточные и конечные данные (результаты вычислений АЛУ);
- счетчики команд;
- кэш-память хранит часто используемые данные и команды. Обращение в кэш-память гораздо быстрее, чем в оперативную память, поэтому, чем она больше, тем выше быстродействие ЦП.
«Процессор и его компоненты»
Готовые курсовые работы и рефераты
Решение учебных вопросов в 2 клика
Помощь в написании учебной работы
Рисунок 3. Упрощенная схема процессора
Принципы работы процессора
ЦП работает под управлением программы, которая находится в оперативной памяти.
АЛУ получает данные и выполняет указанную операцию, записывая результат в один из свободных регистров.
Текущая команда находится в специальном регистре команд. При работе с текущей командой значение так называемого счетчика команд увеличивается, который затем указывает на следующую команду (исключением может быть только команда перехода).
Команда состоит из записи операции (которую нужно выполнить), адресов ячеек исходных данных и результата. По указанным в команде адресам берутся данные и помещаются в обычные регистры (в смысле не в регистр команды), получившийся результат тоже сначала помещается в регистр, а уж потом перемещается по своему адресу, указанному в команде.
Характеристики процессора
Тактовая частота указывает частоту, на которой работает ЦП. За $1$ такт выполняется несколько операций. Чем выше частота, тем выше быстродействие ПК. Тактовая частота современных процессоров измеряется в гигагерцах (ГГц): $1$ ГГц = $1$ миллиард тактов в секунду.
Для повышения производительности ЦП стали использовать несколько ядер, каждое из которых фактически является отдельным процессором. Чем больше ядер, тем выше производительность ПК.
Процессор связан с другими устройствами (например, с оперативной памятью) через шины данных, адреса и управления. Разрядность шин кратна 8 (т.к. имеем дело с байтами) и отличается для разных моделей, а также различна для шины данных и шины адреса.
Разрядность шины данных указывает на количество информации (в байтах), которое можно передать за $1$ раз (за $1$ такт). От разрядности адресной шины зависит максимальный объем оперативной памяти, с которым может работать ЦП.
От частоты системной шины зависит количество данных, которые передаются за отрезок времени. Для современных ПК за $1$ такт можно передать несколько бит. Важна также и пропускная способность шины, равная частоте системной шины, умноженной на количество бит, которые можно передать за $1$. Если частота системной шины равна $100$ Мгц, а за $1$ такт передается $2$ бита, то пропускная способность равна $200$ Мбит/сек.
Пропускная способность современных ПК исчисляется в гигабитах (или десятках гигабит) в секунду. Чем выше этот показатель, тем лучше. На производительность ЦП влияет также объем кэш-памяти.
Данные для работы ЦП поступают из оперативной памяти, но т.к. память медленнее ЦП, то он может часто простаивать. Во избежание этого между ЦП и оперативной памятью располагают кэш-память, которая быстрее оперативной. Она работает как буфер. Данные из оперативной памяти посылаются в кэш, а затем в ЦП.
Когда ЦП требует следующее данное, то при наличии его в кэш-памяти оно берется из него, иначе происходит обращение к оперативной памяти. Если в программе выполняется последовательно одна команда за другой, то при выполнении одной команды коды следующих команд загружаются из оперативной памяти в кэш. Это сильно ускоряет работу, т.к. ожидание ЦП сокращается.
Замечание 1
Существует кэш-память трех видов:
- Кэш-память $1$-го уровня самая быстрая, находится в ядре ЦП, поэтому имеет небольшие размеры ($8–128$ Кб).
- Кэш-память $2$-го уровня находится в ЦП, но не в ядре. Она быстрее оперативной памяти, но медленнее кэш-памяти $1$-го уровня. Размер от $128$ Кбайт до нескольких Мбайт.
- Кэш-память $3$-го уровня быстрее оперативной памяти, но медленнее кэш-памяти $2$-го уровня.
От объема этих видов памяти зависит скорость работы ЦП и соответственно компьютера.
ЦП может поддерживать работу только определенного вида оперативной памяти: $DDR$, $DDR2$ или $DDR3$. Чем быстрее работает оперативная память, тем выше производительность работы ЦП.
Следующая характеристика – сокет (разъем), в который вставляется ЦП. Если ЦП предназначен для определенного вида сокета, то его нельзя установить в другой. Между тем, на материнской плате находится только один сокет для ЦП и он должен соответствовать типу этого процессора.
Типы процессоров
Основной компанией, выпускающей ЦП для ПК, является компания Intel. Первым процессором для ПК был процессор $8086$. Следующей моделью была $80286$, далее $80386$, со временем цифру $80$ стали опускать и ЦП стали называть тремя цифрами: $286$, $386$ и т.д. Поколение процессоров часто называют семейством $x86$. Выпускаются и другие модели процессоров, например, семейства Alpha, Power PC и др.
Компаниями-производителями ЦП также являются AMD, Cyrix, IBM, Texas Instruments.
В названии процессора часто можно встретить символы $X2$, $X3$, $X4$, что означает количество ядер. Например в названии Phenom $X3$ $8600$ символы $X3$ указывают на наличие трех ядер.
Итак, основными типами ЦП являются $8086$, $80286$, $80386$, $80486$, Pentium, Pentium Pro, Pentium MMX, Pentium II, Pentium III и Pentium IV. Celeron является урезанным вариантом процессора Pentium. После названия обычно указывается тактовая частота ЦП. Например, Celeron $450$ обозначает тип ЦП Celeron и его тактовую частоту – $450$ МГц.
Процессор нужно устанавливать на материнскую плату с соответствующей процессору частотой системной шины.
В последних моделях ЦП реализован механизм защиты от перегрева, т.е. ЦП при повышении температуры выше критической переходит на пониженную тактовую частоту, при которой потребляется меньше электроэнергии.
Определение 2
Если в вычислительной системе несколько параллельно работающих процессоров, то такие системы называются многопроцессорными.
Источник: spravochnick.ru
Как работает процессор?
Инструмент проще, чем машина. Зачастую инструментом работают руками, а машину приводит в действие паровая сила или животное.
Чарльз Бэббидж
Компьютер тоже можно назвать машиной, только вместо паровой силы здесь электричество. Но программирование сделало компьютер таким же простым, как любой инструмент.
Процессор — это сердце/мозг любого компьютера. Его основное назначение — арифметические и логические операции, и прежде чем погрузиться в дебри процессора, нужно разобраться в его основных компонентах и принципах их работы.
Два основных компонента процессора
Устройство управления
Устройство управления (УУ) помогает процессору контролировать и выполнять инструкции. УУ сообщает компонентам, что именно нужно делать. В соответствии с инструкциями он координирует работу с другими частями компьютера, включая второй основной компонент — арифметико-логическое устройство (АЛУ). Все инструкции вначале поступают именно на устройство управления.
Существует два типа реализации УУ:
- УУ на жёсткой логике (англ. hardwired control units). Характер работы определяется внутренним электрическим строением — устройством печатной платы или кристалла. Соответственно, модификация такого УУ без физического вмешательства невозможна.
- УУ с микропрограммным управлением (англ. microprogrammable control units). Может быть запрограммирован для тех или иных целей. Программная часть сохраняется в памяти УУ.
УУ на жёсткой логике быстрее, но УУ с микропрограммным управлением обладает более гибкой функциональностью.
Арифметико-логическое устройство
Это устройство, как ни странно, выполняет все арифметические и логические операции, например сложение, вычитание, логическое ИЛИ и т. п. АЛУ состоит из логических элементов, которые и выполняют эти операции.
Большинство логических элементов имеют два входа и один выход.
Ниже приведена схема полусумматора, у которой два входа и два выхода. A и B здесь являются входами, S — выходом, C — переносом (в старший разряд).
Схема арифметического полусумматора
Хранение информации — регистры и память
Как говорилось ранее, процессор выполняет поступающие на него команды. Команды в большинстве случаев работают с данными, которые могут быть промежуточными, входными или выходными. Все эти данные вместе с инструкциями сохраняются в регистрах и памяти.
Регистры
Регистр — минимальная ячейка памяти данных. Регистры состоят из триггеров (англ. latches/flip-flops). Триггеры, в свою очередь, состоят из логических элементов и могут хранить в себе 1 бит информации.
Прим. перев. Триггеры могут быть синхронные и асинхронные. Асинхронные могут менять своё состояние в любой момент, а синхронные только во время положительного/отрицательного перепада на входе синхронизации.
По функциональному назначению триггеры делятся на несколько групп:
- RS-триггер: сохраняет своё состояние при нулевых уровнях на обоих входах и изменяет его при установке единице на одном из входов (Reset/Set — Сброс/Установка).
- JK-триггер: идентичен RS-триггеру за исключением того, что при подаче единиц сразу на два входа триггер меняет своё состояние на противоположное (счётный режим).
- T-триггер: меняет своё состояние на противоположное при каждом такте на его единственном входе.
- D-триггер: запоминает состояние на входе в момент синхронизации. Асинхронные D-триггеры смысла не имеют.
Для хранения промежуточных данных ОЗУ не подходит, т. к. это замедлит работу процессора. Промежуточные данные отсылаются в регистры по шине. В них могут храниться команды, выходные данные и даже адреса ячеек памяти.
Принцип действия RS-триггера
Память (ОЗУ)
ОЗУ (оперативное запоминающее устройство, англ. RAM) — это большая группа этих самых регистров, соединённых вместе. Память у такого хранилища непостоянная и данные оттуда пропадают при отключении питания. ОЗУ принимает адрес ячейки памяти, в которую нужно поместить данные, сами данные и флаг записи/чтения, который приводит в действие триггеры.
Прим. перев. Оперативная память бывает статической и динамической — SRAM и DRAM соответственно. В статической памяти ячейками являются триггеры, а в динамической — конденсаторы. SRAM быстрее, а DRAM дешевле.
Команды (инструкции)
Команды — это фактические действия, которые компьютер должен выполнять. Они бывают нескольких типов:
- Арифметические: сложение, вычитание, умножение и т. д.
- Логические: И (логическое умножение/конъюнкция), ИЛИ (логическое суммирование/дизъюнкция), отрицание и т. д.
- Информационные: move , input , outptut , load и store .
- Команды перехода: goto , if . goto , call и return .
- Команда останова: halt .
Инструкции предоставляются компьютеру на языке ассемблера или генерируются компилятором высокоуровневых языков.
В процессоре инструкции реализуются на аппаратном уровне. За один такт одноядерный процессор может выполнить одну элементарную (базовую) инструкцию.
Группу инструкций принято называть набором команд (англ. instruction set).
Тактирование процессора
Быстродействие компьютера определяется тактовой частотой его процессора. Тактовая частота — количество тактов (соответственно и исполняемых команд) за секунду.
Частота нынешних процессоров измеряется в ГГц (Гигагерцы). 1 ГГц = 10⁹ Гц — миллиард операций в секунду.
Чтобы уменьшить время выполнения программы, нужно либо оптимизировать (уменьшить) её, либо увеличить тактовую частоту. У части процессоров есть возможность увеличить частоту (разогнать процессор), однако такие действия физически влияют на процессор и нередко вызывают перегрев и выход из строя.
Выполнение инструкций
Инструкции хранятся в ОЗУ в последовательном порядке. Для гипотетического процессора инструкция состоит из кода операции и адреса памяти/регистра. Внутри управляющего устройства есть два регистра инструкций, в которые загружается код команды и адрес текущей исполняемой команды. Ещё в процессоре есть дополнительные регистры, которые хранят в себе последние 4 бита выполненных инструкций.
Ниже рассмотрен пример набора команд, который суммирует два числа:
- LOAD_A 8 . Это команда сохраняет в ОЗУ данные, скажем, . Первые 4 бита — код операции. Именно он определяет инструкцию. Эти данные помещаются в регистры инструкций УУ. Команда декодируется в инструкцию load_A — поместить данные 1000 (последние 4 бита команды) в регистр A .
- LOAD_B 2 . Ситуация, аналогичная прошлой. Здесь помещается число 2 ( 0010 ) в регистр B .
- ADD B A . Команда суммирует два числа (точнее прибавляет значение регистра B в регистр A ). УУ сообщает АЛУ, что нужно выполнить операцию суммирования и поместить результат обратно в регистр A .
- STORE_A 23 . Сохраняем значение регистра A в ячейку памяти с адресом 23 .
Вот такие операции нужны, чтобы сложить два числа.
Шина
Все данные между процессором, регистрами, памятью и I/O-устройствами (устройствами ввода-вывода) передаются по шинам. Чтобы загрузить в память только что обработанные данные, процессор помещает адрес в шину адреса и данные в шину данных. Потом нужно дать разрешение на запись на шине управления.
Кэш
У процессора есть механизм сохранения инструкций в кэш. Как мы выяснили ранее, за секунду процессор может выполнить миллиарды инструкций. Поэтому если бы каждая инструкция хранилась в ОЗУ, то её изъятие оттуда занимало бы больше времени, чем её обработка. Поэтому для ускорения работы процессор хранит часть инструкций и данных в кэше.
Если данные в кэше и памяти не совпадают, то они помечаются грязными битами (англ. dirty bit).
Поток инструкций
Современные процессоры могут параллельно обрабатывать несколько команд. Пока одна инструкция находится в стадии декодирования, процессор может успеть получить другую инструкцию.
Однако такое решение подходит только для тех инструкций, которые не зависят друг от друга.
Если процессор многоядерный, это означает, что фактически в нём находятся несколько отдельных процессоров с некоторыми общими ресурсами, например кэшем.
Источник: tproger.ru