Различают Принстонскую и Гарвардскую архитектуру вычислительных машин. Эти архитектурные варианты были предложены в конце 40-х годов специалистами, соответственно, Принстонского и Гарвардского университетов США для разрабатываемых ими моделей компьютеров.
Принстонская архитектура
Принстонская архитектура , которая часто называется архитектурой фон Неймана , характеризуется использованием общей оперативной памяти для хранения программ, данных, а также для организации стека. Для обращения к этой памяти используется общая системная шина, по которой в процессор поступают и команды, и данные.
Архитектура современных персональных компьютеров основана на
магистрально-модульном принципе .
Любую вычислительную машину образуют три основные компонента:
- процессор,
- память,
- устройства ввода-вывода (УВВ).
Информационная связь между устройствами компьютера осуществляется через системную шину (системную магистраль).
Система кодирования команд и способы адресации
Шина – это кабель, состоящий из множества проводников. Количество проводников, входящих в состав шины, является
максимальной разрядностью шины .
Системная шина, в свою очередь, представляет собой совокупность
- шины данных, служащей для переноса информации;
- шины адреса, которая определяет, куда переносить информацию;
- шины управления, которая определяет правила для передачи информации;
- шины питания, подводящей электропитание ко всем узлам вычислительной машины.
Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется
разрядностью шины .
Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.
Устройство управления (УУ) формирует адрес команды, которая должна быть выполнена в данном цикле, и выдает управляющий сигнал на чтение содержимого соответствующей ячейки запоминающего устройства (ЗУ). Считанная команда передается в УУ.
По информации, содержащейся в адресных полях команды, УУ формирует адреса операндов и управляющие сигналы для их чтения из ЗУ и передачи в арифметико-логическое устройство (АЛУ). После считывания операндов устройство управления по коду операции, содержащемуся в команде, выдает в АЛУ сигналы на выполнение операции. Полученный результат записывается в ЗУ по адресу приемника результата под управлением сигналов записи. Признаки результата (знак, наличие переполнения, признак нуля и так далее) поступают в устройство управления, где записываются в специальный регистр признаков. Эта информация может использоваться при выполнении следующих команд программы, например команд условного перехода.
Устройство ввода позволяет ввести программу решения задачи и исходные данные в ЭВМ и поместить их в оперативную память. В зависимости от типа устройства ввода исходные данные для решения задачи вводятся непосредственно с клавиатуры, либо они должны быть предварительно помещены на какой-либо носитель (дисковый накопитель).
10 полезных команд для iPhone и iPad! Shortcuts в iOS 14
Устройство вывода служит для вывода из ЭВМ результатов обработки исходной информации. Чаще всего это символьная информация, которая выводится с помощью печатающих устройств или на экран дисплея.
Запоминающее устройство или память – это совокупность ячеек, предназначенных для хранения некоторого кода. Каждой из ячеек присвоен свой номер, называемый адресом . Информацией, записанной в ячейке, могут быть как команды в машинном виде, так и данные.
Обработка данных и команд осуществляется посредством арифметико-логического устройства (АЛУ), предназначенного для непосредственного выполнения машинных команд под действием устройства управления. АЛУ и УУ совместно образуют центральное процессорное устройство (ЦПУ). Результаты обработки передаются в память.
Основные принципы построения вычислительных машин с архитектурой фон Неймана
- Принцип двоичности. Для представления данных и команд используется двоичная система счисления.
- Принцип программного управления. Программа состоит из набора команд, которые выполняются процессором друг за другом в определённой последовательности.
- Принцип однородности памяти. Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления, чаще всего – двоичной). Над командами можно выполнять такие же действия, как и над данными.
- Принцип адресуемости памяти. Структурно основная память состоит из пронумерованных ячеек, процессору в произвольный момент времени доступна любая ячейка.
- Принцип последовательного программного управления. Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой.
- Принцип условного перехода. Команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода (а также команд вызова функций и обработки прерываний), которые изменяют последовательность выполнения команд в зависимости от значений данных. Этот принцип был сформулирован задолго до фон Неймана Адой Лавлейс и Чарльзом Бэббиджем, однако был логически включен в указанный набор как дополняющий предыдущий принцип.
Архитектура фон Неймана имеет ряд важных достоинств.
- Наличие общей памяти позволяет оперативно перераспределять ее объем для хранения отдельных массивов команд, данных и реализации стека в зависимости от решаемых задач. Таким образом, обеспечивается возможность более эффективного использования имеющегося объема оперативной памяти в каждом конкретном случае применения.
- Использование общей шины для передачи команд и данных значительно упрощает отладку, тестирование и текущий контроль функционирования системы, повышает ее надежность.
Поэтому Принстонская архитектура в течение долгого времени доминировала в вычислительной технике.
Однако ей присущи и существенные недостатки. Основным из них является необходимость последовательной выборки команд и обрабатываемых данных по общей системной шине. При этом общая шина становится «узким местом» (bottleneck – «бутылочное горло»), которое ограничивает производительность цифровой системы.
Гарвардская архитектура
Гарвардская архитектура была разработана Говардом Эйкеном в конце 1930-х годов в Гарвардском университете с целью увеличить скорость выполнения вычислительных операций и оптимизировать работу памяти. Она характеризуется физическим разделением памяти команд (программ) и памяти данных. В ее оригинальном варианте использовался также отдельный стек для хранения содержимого программного счетчика, который обеспечивал возможности выполнения вложенных подпрограмм. Каждая память соединяется с процессором отдельной шиной, что позволяет одновременно с чтением-записью данных при выполнении текущей команды производить выборку и декодирование следующей команды. Благодаря такому разделению потоков команд и данных и совмещению операций их выборки реализуется более высокая производительность, чем при использовании Принстонской архитектуры.
Недостатки Гарвардской архитектуры связаны с необходимостью проведения большего числа шин, а также с фиксированным объемом памяти, выделенной для команд и данных, назначение которой не может оперативно перераспределяться в соответствии с требованиями решаемой задачи. Поэтому приходится использовать память большего объема, коэффициент использования которой при решении разнообразных задач оказывается более низким, чем в системах с Принстонской архитектурой. Однако развитие микроэлектронной технологии позволило в значительной степени преодолеть указанные недостатки, поэтому Гарвардская архитектура широко применяется во внутренней структуре современных высокопроизводительных микропроцессоров, где используется отдельная кэш-память для хранения команд и данных. В то же время во внешней структуре большинства микропроцессорных систем реализуются принципы Принстонской архитектуры.
Комментариев к записи: 5
Источник: prog-cpp.ru
Тест «Основополагающие принципы устройства ЭВМ» 10 класс
После того как вы поделитесь материалом внизу появится ссылка для скачивания.
Получить код —>
Информатика — еще материалы к урокам:
- Контрольно-измерительные материалы по информатике для промежуточной аттестации в 7 классе
- План-конспект урока по информатике «Системы обработки числовых данных. Табличный процессор»
- Презентация по информатике «Системы обработки числовых данных. Табличный процессор»
- Конспект урока «Техника безопасности и правила поведения в компьютерном классе»
- Итоговая годовая контрольная работа по информатике 10 класс
- Практическая работа «Составление программ, содержащих циклы с параметром»
Предметы
Алгебра
Английский язык
Биология
География
Геометрия
ИЗО
Информатика
История
Литература
Математика
Музыка
МХК
Начальная школа
ОБЖ
Обществознание
Окружающий мир
ОРКСЭ
Педагогика
Русский язык
Технология
Физика
Физкультура
Химия
Экология
Похожие материалы
- 18-01-2020, 11:29 Принципы обучения и воспитания в ДОУ по ФГОС
- 17-12-2019, 00:11 Принципы здоровьесбережения при организации занятия
- 27-11-2019, 11:14 Дистанционное обучение ИЯ и его методические принципы
- 27-05-2019, 08:36 Презентация «Закономерности и принципы воспитания»
- 29-08-2016, 12:05 Презентация «Устройства компьютера. Устройства ввода и вывода
- 18-10-2015, 11:46 Презентация «Принципы радиосвязи»
- 11-10-2015, 11:13 Презентация «Принципы гуманной педагогики»
- 16-09-2015, 21:14 Презентация «Принципы русской орфографии»
Источник: uchitelya.com
Команды программ и хранятся в одной и той же памяти и внешне в памяти они
Один из принципов «Архитектуры фон Неймана» гласит: в компьютере не придется изменять подключения проводов, если все инструкции будут храниться в его памяти . И как только эту идею в рамках “архитектуры фон Неймана» воплотили на практике, родился современный компьютер.
Как всякая техника, компьютеры развивались в сторону увеличения функциональности, целесообразности и красоты. Есть вообще утверждение, претендующее на закон: совершенный прибор не может быть безобразным по внешнему виду и наоборот, красивая техника не бывает плохой. Компьютер становится не только полезным, но и украшающим помещение прибором. Внешний вид современного компьютера, конечно, соотносится со схемой фон Неймана, но в то же время и разнится с ней.
Благодаря фирме IBM идеи фон Неймана реализовались в виде широко распространенного в наше время принципа открытой архитектуры системных блоков компьютеров. Согласно этого принципа компьютер не является единым неразъемным устройством, а состоящим из независимо изготовленных частей, причем методы сопряжения устройств с компьютером не являются секретом фирмы-производителя, а доступны всем желающим.
Таким образом, системные блоки можно собирать по принципу детского конструктора, то есть менять детали на другие, более мощные и современные, модернизируя свой компьютер ( апгрейд , upgrade — «повышать уровень»). Новые детали полностью взаимозаменяемы со старыми. «Открыто архитектурными» персональные компьютеры делает также системная шина, это некая виртуальная общая дорога или жила, или канал, в который выходят все выводы ото всех узлов и деталей системного блока. Надо сказать, что большие компьютеры (не персональные) не обладают свойством открытости, в них нельзя просто так что-то заменить другим, более совершенным, например, в самых современных компьютерах могут отсутствовать даже соединительные провода между элементами компьютерной системы: мышью, клавиатурой («keyboard»– «клавишная доска») и системным блоком. Они могут общаться между собой при помощи инфракрасного излучения, для этого в системном блоке есть специальное окошко приема инфракрасных сигналов (по типу пульта дистанционного управления телевизора).
В настоящее время обычный персональный компьютер представляет собой комплекс, состоящий из:
- основной электронной платы (системной, материнской), на которой размещены те блоки, которые осуществляют обработку информации вычисления;
- схем, управляющих другими устройствами компьютера, вставляемых в стандартные разъемы на системной плате – слоты;
- дисков хранения информации;
- блока питания, от которого подводится электропитание ко всем электронным схемам;
- корпуса (системный блок), в котором все внутренние устройства компьютера устанавливаются на общей раме;
- клавиатуры;
- монитора;
- других внешних устройств.
Компьютеры, построенные на принципах фон Неймана
В середине 1940-х проект компьютера, хранящего свои программы в общей памяти был разработан в Школе электрических разработок Мура (англ. Moore School of Electrical Engineering ) в Университете штата Пенсильвания.
Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру ENIAC, который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании ENIAC. По плану предполагалось осуществить проект силами Муровской школы в машине EDVAC, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах. Первыми пятью компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:
- Как распечатать письмо из outlook
- Как начислить страховые взносы в 1с зуп
- Привезли телефон с программой социальный мониторинг что делать
- Совхоз для кормления животных использует два вида корма в дневном рационе excel
- Excel разделение на диапазоны
Источник: kompyutery-programmy.ru