Какому уровню модели osi принадлежит обмен сообщениями с прикладной программой

Модель взаимодействия открытых систем (Open System Interconnection, OSI) определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели занимает более 1000 страниц текста.

В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический . Каждый уровень имеет дело с определенным аспектом взаимодействия сетевых устройств.

Contents

  • 1 Физический уровень
  • 2 Канальный уровень
  • 3 Сетевой уровень
  • 4 Транспортный уровень
  • 5 Сеансовый уровень
  • 6 Представительный уровень
  • 7 Прикладной уровень

Физический уровень [ ]

Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, такую как крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме того, здесь стандартизируются типы разъемов и назначение каждого контакта. Реализуется аппаратно.

Прикладной уровень | Курс «Компьютерные сети»

Протоколы физического уровня OSI:

  • USB, Firewire
  • IEEE 802.15 (Bluetooth), IRDA
  • EIA RS-232, EIA-422, EIA-423, RS-449, RS-485
  • Ethernet (включая 10BASE-T, 10BASE2, 10BASE5, 100BASE-TX, 100BASE-FX, 100BASE-T, 1000BASE-T, 1000BASE-SX и другие)
  • DSL, ISDN
  • SONET/SDH
  • 802.11 Wi-Fi
  • Etherloop
  • GSM Um radio interface
  • ITU и ITU-T
  • TransferJet
  • ARINC 818
  • G.hn/G.9960

Канальный уровень [ ]

Канальный уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Другая задача канального уровня — реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames).

Канальный уровень обеспечивает корректность передачи каждого кадра помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом, и добавляет контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра.

7 уровней модели OSI: Вы не поверите, что происходит на уровне 4! #osi #it

Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров . Необходимо отметить, что функция исправления ошибок для канального уровня не является обязательной, поэтому в некоторых протоколах этого уровня она отсутствует, например в Ethernet и frame relay. Реализуются программно-аппаратно.

Спецификация IEEE 802 разделяет этот уровень на два подуровня — MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.

На этом уровне работают коммутаторы, мосты.

Протоколы канального уровня:

  • ARCnet
  • ATM
  • Cisco Discovery Protocol (CDP)
  • Controller Area Network (CAN)
  • Econet
  • Ethernet, Ethernet Automatic Protection Switching (EAPS), Fiber Distributed Data Interface (FDDI), Frame Relay
  • High-Level Data Link Control (HDLC), IEEE 802.2 (provides LLC functions to IEEE 802 MAC layers), Link Access Procedures, D channel (LAPD)
  • IEEE 802.11 wireless LAN
  • LocalTalk
  • Multiprotocol Label Switching (MPLS)
  • Point-to-Point Protocol (PPP)
  • Serial Line Internet Protocol (SLIP) (obsolete)
  • StarLan
  • Spanning tree protocol
  • Token ring
  • Unidirectional Link Detection (UDLD)
  • x.25

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS, UDI.

Сетевой уровень [ ]

Сетевой уровень сетевой модели OSI предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю.

На этом уровне работает маршрутизатор (роутер).

Сетевой уровень — доставка пакета:

  • между любыми двумя узлами сети с произвольной топологией;
  • между любыми двумя сетями в составной сети;
  • сеть — совокупность компьютеров, использующих для обмена данными единую сетевую технологию;
  • маршрут — последовательность прохождения пакетом маршрутизаторов в составной сети.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов — Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют сути.

Пример: IP/IPv4/IPv6 (Internet Protocol), IPX (Internetwork Packet Exchange, протокол межсетевого обмена), X.25 (частично этот протокол реализован на уровне 2) CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security), ICMP (Internet Control Message Protocol), RIP (Routing Information Protocol), OSPF (Open Shortest Path First), ARP (Address Resolution Protocol).

Читайте также:
Как сохранить программу на диск d

Транспортный уровень [ ]

Транспортный уровень (Transport layer) обеспечивает приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Транспортный уровень — обеспечение доставки информации с требуемым качеством между любыми узлами сети:

  • разбивка сообщения сеансового уровня на пакеты , их нумерация;
  • буферизация принимаемых пакетов;
  • упорядочивание прибывающих пакетов;
  • адресация прикладных процессов;
  • управление потоком.

Пример: ATP (AppleTalk Transaction Protocol), CUDP (Cyclic UDP), DCCP (Datagram Congestion Control Protocol), FCP (Fiber Channel Protocol), IL (IL Protocol), NBF (NetBIOS Frames protocol), NCP (NetWare Core Protocol), SCTP (Stream Control Transmission Protocol), SPX (Sequenced Packet Exchange), SST (Structured Stream Transport), TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

Сеансовый уровень [ ]

Сеансовый уровень (Session layer) обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

Сеансовый уровень — управление диалогом объектов прикладного уровня:

  • установление способа обмена сообщениями (дуплексный или полудуплексный);
  • синхронизация обмена сообщениями;
  • организация «контрольных точек» диалога.

Пример: ADSP (AppleTalk Data Stream Protocol), ASP (AppleTalk Session Protocol), H.245 (Call Control Protocol for Multimedia Communication), ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS (Internet Storage Name Service), L2F (Layer 2 Forwarding Protocol), L2TP (Layer 2 Tunneling Protocol), NetBIOS (Network Basic Input Output System), PAP (Password Authentication Protocol), PPTP (Point-to-Point Tunneling Protocol), RPC (Remote Procedure Call Protocol), RTCP (Real-time Transport Control Protocol), SMPP (Short Message Peer-to-Peer), SCP (Secure Copy Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol).

Представительный уровень [ ]

Представительный уровень (Presentation layer) имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например в кодах ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Уровень представления — согласовывает представление (синтаксис) данных при взаимодействии двух прикладных процессов:

  • преобразование данных из внешнего формата во внутренний;
  • шифрование и расшифровка данных.

Пример: AFP — Apple Filing Protocol, ICA — Independent Computing Architecture, LPP — Lightweight Presentation Protocol, NCP — NetWare Core Protocol, NDR — Network Data Representation RDP — Remote Desktop Protocol, XDR — eXternal Data Representation, X.25 PAD — Packet Assembler/Disassembler Protocol.

Прикладной уровень [ ]

Прикладной уровень (Application layer) — это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют совместную работу, например с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Прикладной уровень — набор всех сетевых сервисов, которые предоставляет система конечному пользователю:

  • идентификация, проверка прав доступа;
  • принт- и файл-сервис, почта, удаленный доступ.

Пример: HTTP, POP3, SMTP, FTP, XMPP, OSCAR, Modbus, SIP, TELNET

Источник: gos-it.fandom.com

Уровни модели OSI

Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр?

Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

Сетевая модель OSI

Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

Сетевая модель OSI

В переводе с английского — базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI.

Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

Читайте также:
Для чего нужна программа office addin

Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

7 уровней модели OSI

Уровни OSI

Модель содержит в себе семь упрощённых этапов:

  • Физический.
  • Канальный.
  • Сетевой.
  • Транспортный.
  • Сеансовый.
  • Представительский.
  • Прикладной.

Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения. Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая — способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

Перейдём к непосредственному знакомству с уровнями.

Физический уровень

Главная задача первого этапа — пересылка битов через физические каналы связи. Физические каналы связи — устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь.

Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

Физический этап модели

Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

Канальный уровень

На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы — кадры. Основная задача канального уровня — выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма.

Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

Канальный уровень OSI

Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

Сетевой уровень

В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

Сетевой этап модели OSI

Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор — устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи — хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

Транспортный уровень

Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

Верхний транспортный уровень

Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

Сеансовый уровень

Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново.

Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

Сеансовый этап сетевой модели

Представительский уровень

Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

Уровень представления OSI

Прикладной уровень

Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер приобретает доступ к файлам, Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

Читайте также:
Написать программу классифицирующую треугольники если даны стороны

Прикладной уровень OSI

Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!

Источник: nastroyvse.ru

Изучите модель OSI за 5 минут

Изучите модель OSI за 5 минут

Модель OSI, ознакомьтесь с основами модели Open Systems Interconnection (OSI) для концептуализации связи в компьютерной системе.

Модель Open Systems Interconnection (OSI) — это стандарт того, как компьютеры, серверы и люди общаются внутри системы. Это была первая стандартная модель для сетевых коммуникаций, принятая в начале 1980-х годов всеми крупными компьютерными и телекоммуникационными компаниями.

Модель OSI представляет собой универсальный язык для описания сетей и представления о них в виде отдельных фрагментов, или уровней.

Уровни модели OSI

Модель описывает семь уровней, с помощью которых компьютерные системы обмениваются данными по сети.

Изучите модель OSI за 5 минут

  • Прикладной уровень
  • Уровень представления
  • Сеансовый уровень
  • Транспортный уровень
  • Сетевой уровень
  • Канальный уровень
  • Физический уровень

Каждый из этих уровней имеет свой собственный способ работы, со своим набором протоколов, которые отличают его от других. В этой статье мы рассмотрим все уровни по отдельности.

Прикладной уровень

Прикладной уровень реализован в программном обеспечении. Это уровень, используемый для взаимодействия с приложениями.

Рассмотрим пример отправки сообщения. Отправитель взаимодействует с прикладным уровнем и отправляет сообщение. Прикладной уровень отправляет сообщение на следующий уровень модели OSI — уровень представления.

Уровень представления

Данные с прикладного уровня передаются на уровень представления. Уровень представления получает данные в виде слов, символов, букв, цифр и так далее и преобразует их в двоичный формат, представляемый машиной. Этот процесс известен как трансляция.

На этом этапе символы ASCII (Американский стандартный код для обмена информацией) преобразуются в расширенный двоично-кодированный десятичный код обмена (EBCDIC). Прежде чем преобразованные данные пойдут дальше, они также подвергаются процессам кодирования и шифрования с использованием протокола SSL для шифрования и дешифрования.

Уровень представления обеспечивает абстракцию и предполагает, что следующие за ним уровни будут заботиться о данных, передаваемых им с этого уровня. Он также играет роль в сжатии данных. Сжатие может быть с потерями или без потерь, в зависимости от различных факторов, выходящих за рамки данной статьи.

Сеансовый уровень

Сеансовый уровень помогает устанавливать и управлять соединениями. Основная работа этого уровня заключается в установлении сеанса. Например, на сайте интернет-магазина создается сеанс между вашим компьютером и сервером сайта.

Сеансовый уровень позволяет отправлять и получать данные, а затем завершать подключенные сеансы. Перед созданием сеанса выполняется аутентификация, а затем авторизация. Как и предыдущие уровни, сеансовый уровень также предполагает, что после завершения его работы данные будут правильно обработаны последующими уровнями.

Транспортный уровень

Транспортный уровень управляет транспортировкой данных и имеет свой собственный набор протоколов для передачи данных. Данные, полученные здесь от сеансового уровня, делятся на более мелкие единицы данных, называемые сегментами. Этот процесс известен как сегментация. Каждый сегмент содержит номера портов источника и получателя, а также порядковый номер.

Номера портов определяют приложение, через которое должны быть отправлены данные. Обратите внимание, что данные передаются фрагментами. Порядковые номера используются для сборки сегментов в правильном порядке.

Транспортный уровень заботится об управлении потоком, или о количестве данных, передаваемых в определенный момент времени. Он также обеспечивает контроль ошибок, таких как потеря данных, повреждение данных и так далее. Для этого используется значение для обнаружения ошибок, известное как контрольная сумма. Транспортный уровень добавляет контрольную сумму к каждому сегменту данных, чтобы проверить, правильно ли получены отправленные данные. Затем данные передаются на сетевой уровень.

Сетевой уровень

Сетевой уровень помогает взаимодействовать с другими сетями. Он работает для передачи полученных сегментов данных с одного компьютера на другой, расположенный в другой сети. Маршрутизатор находится на сетевом уровне.

Функция сетевого уровня — логическая адресация (IP-адресация). Он присваивает IP-адреса отправителя и получателя каждому пакету данных, чтобы обеспечить его получение в нужном пункте назначения. Затем сетевой уровень маршрутизирует пакеты данных. На сетевом уровне также происходит распределение нагрузки, чтобы исключить перегрузку. Далее данные передаются на канальный уровень.

Канальный уровень

Канальный уровень обеспечивает прямую связь с другими устройствами, такими как компьютеры и хосты.

Он получает пакеты данных, содержащие IP-адреса отправителя и получателя, от сетевого уровня и выполняет физическую адресацию, назначая адреса управления доступом к среде (MAC) отправителя и получателя пакетам данных для формирования фрейма.

Физический уровень

Этот уровень состоит из всех аппаратных и механических элементов системы, включая конфигурацию проводов, контактов, адаптеров и так далее. Данные, полученные здесь предыдущими уровнями, имеют форму 0 и 1. Физический уровень преобразует эти данные и переносит их на локальные носители с помощью различных средств, включая провода, электрические сигналы, световые сигналы (как в оптоволоконных кабелях) и радиосигналы (как в WiFi).

Обратите внимание, что физический уровень работает на стороне приемника и переносит полученный сигнал на канал передачи данных в виде кадра (преобразуя его обратно в биты). Кадр перемещается на более высокие уровни, и в конечном итоге необходимые данные поступают на прикладной уровень, который представляет собой программное обеспечение.

Модель OSI Заключение

Модель OSI полезна, когда вам нужно описать архитектуру сети или устранить неполадки в сети. Надеюсь, эта статья дала вам более четкое понимание элементов этой модели.

Источник: bookflow.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru