Напомним, что в математике факториал числа n определяется как Например, Ясно, что факториал можно легко посчитать, воспользовавшись циклом for. Представим, что нам нужно в нашей программе вычислять факториал разных чисел несколько раз (или в разных местах кода). Конечно, можно написать вычисление факториала один раз, а затем используя Copy-Paste вставить его везде, где это будет нужно.
# вычислим 3! res = 1 for i in range(1, 4): res *= i print(res) # вычислим 5! res = 1 for i in range(1, 6): res *= i print(res)
Однако, если мы ошибёмся один раз в начальном коде, то потом эта ошибка попадёт в код во все места, куда мы скопировали вычисление факториала. Да и вообще, код занимает больше места, чем мог бы. Чтобы избежать повторного написания одной и той же логики, в языках программирования существуют функции.
Функции — это такие участки кода, которые изолированы от остальный программы и выполняются только тогда, когда вызываются. Вы уже встречались с функциями sqrt(), len() и print(). Они все обладают общим свойством: они могут принимать параметры (ноль, один или несколько), и они могут возвращать значение (хотя могут и не возвращать). Например, функция sqrt() принимает один параметр и возвращает значение (корень числа). Функция print() принимает переменное число параметров и ничего не возвращает.
Упражнение 1. Вычисление значения функции
Покажем, как написать функцию factorial(), которая принимает один параметр — число, и возвращает значение — факториал этого числа.
def factorial(n): res = 1 for i in range(1, n + 1): res *= i return res print(factorial(3)) print(factorial(5))
Дадим несколько объяснений. Во-первых, код функции должен размещаться в начале программы, вернее, до того места, где мы захотим воспользоваться функцией factorial(). Первая строчка этого примера является описанием нашей функции. factorial — идентификатор, то есть имя нашей функции.
После идентификатора в круглых скобках идет список параметров, которые получает наша функция. Список состоит из перечисленных через запятую идентификаторов параметров. В нашем случае список состоит из одной величины n. В конце строки ставится двоеточие.
Далее идет тело функции, оформленное в виде блока, то есть с отступом. Внутри функции вычисляется значение факториала числа n и оно сохраняется в переменной res. Функция завершается инструкцией return res, которая завершает работу функции и возвращает значение переменной res.
Инструкция return может встречаться в произвольном месте функции, ее исполнение завершает работу функции и возвращает указанное значение в место вызова. Если функция не возвращает значения, то инструкция return используется без возвращаемого значения. В функциях, которым не нужно возвращать значения, инструкция return может отсутствовать.
Приведём ещё один пример. Напишем функцию max(), которая принимает два числа и возвращает максимальное из них (на самом деле, такая функция уже встроена в Питон).
10 20
def max(a, b): if a > b: return a else: return b print(max(3, 5)) print(max(5, 3)) print(max(int(input()), int(input())))
Теперь можно написать функцию max3(), которая принимает три числа и возвращает максимальное их них.
Создание сложных функций в Microsoft Excel, часть 1
def max(a, b): if a > b: return a else: return b def max3(a, b, c): return max(max(a, b), c) print(max3(3, 5, 4))
Встроенная функция max() в Питоне может принимать переменное число аргументов и возвращать максимум из них. Приведём пример того, как такая функция может быть написана.
def max(*a): res = a[0] for val in a[1:]: if val > res: res = val return res print(max(3, 5, 4))
Все переданные в эту функцию параметры соберутся в один кортеж с именем a, на что указывает звёздочка в строке объявления функции.
2. Локальные и глобальные переменные
Внутри функции можно использовать переменные, объявленные вне этой функции
def f(): print(a) a = 1 f()
Здесь переменной a присваивается значение 1, и функция f() печатает это значение, несмотря на то, что до объявления функции f эта переменная не инициализируется. В момент вызова функции f() переменной a уже присвоено значение, поэтому функция f() может вывести его на экран.
Такие переменные (объявленные вне функции, но доступные внутри функции) называются глобальными.
Но если инициализировать какую-то переменную внутри функции, использовать эту переменную вне функции не удастся. Например:
def f(): a = 1 f() print(a)
Получим ошибку NameError: name ‘a’ is not defined . Такие переменные, объявленные внутри функции, называются локальными. Эти переменные становятся недоступными после выхода из функции.
Интересным получится результат, если попробовать изменить значение глобальной переменной внутри функции:
def f(): a = 1 print(a) a = 0 f() print(a)
Будут выведены числа 1 и 0. Несмотря на то, что значение переменной a изменилось внутри функции, вне функции оно осталось прежним! Это сделано в целях “защиты” глобальных переменных от случайного изменения из функции. Например, если функция будет вызвана из цикла по переменной i , а в этой функции будет использована переменная i также для организации цикла, то эти переменные должны быть различными. Если вы не поняли последнее предложение, то посмотрите на следующий код и подумайте, как бы он работал, если бы внутри функции изменялась переменная i.
def factorial(n): res = 1 for i in range(1, n + 1): res *= i return res for i in range(1, 6): print(i, ‘! = ‘, factorial(i), sep=»)
Если бы глобальная переменная i изменялась внутри функции, то мы бы получили вот что:
5! = 1 5! = 2 5! = 6 5! = 24 5! = 120
Итак, если внутри функции модифицируется значение некоторой переменной, то переменная с таким именем становится локальной переменной, и ее модификация не приведет к изменению глобальной переменной с таким же именем.
Более формально: интерпретатор Питон считает переменную локальной для данной функции, если в её коде есть хотя бы одна инструкция, модифицирующая значение переменной, то эта переменная считается локальной и не может быть использована до инициализации. Инструкция, модифицирующая значение переменной — это операторы = , += , а также использование переменной в качестве параметра цикла for . При этом даже если инструкция, модицифицирующая переменную никогда не будет выполнена, интерпретатор это проверить не может, и переменная все равно считается локальной. Пример:
def f(): print(a) if False: a = 0 a = 1 f()
Возникает ошибка: UnboundLocalError: local variable ‘a’ referenced before assignment . А именно, в функции f() идентификатор a становится локальной переменной, т.к. в функции есть команда, модифицирующая переменную a , пусть даже никогда и не выполняющийся (но интерпретатор не может это отследить). Поэтому вывод переменной a приводит к обращению к неинициализированной локальной переменной.
Чтобы функция могла изменить значение глобальной переменной, необходимо объявить эту переменную внутри функции, как глобальную, при помощи ключевого слова global :
def f(): global a a = 1 print(a) a = 0 f() print(a)
В этом примере на экран будет выведено 1 1, так как переменная a объявлена, как глобальная, и ее изменение внутри функции приводит к тому, что и вне функции переменная будет доступна.
Тем не менее, лучше не изменять значения глобальных переменных внутри функции. Если ваша функция должна поменять какую-то переменную, пусть лучше она вернёт это значением, и вы сами при вызове функции явно присвоите в переменную это значение. Если следовать этим правилам, то функции получаются независимыми от кода, и их можно легко копировать из одной программы в другую.
Например, пусть ваша программа должна посчитать факториал вводимого числа, который вы потом захотите сохранить в переменной f. Вот как это не стоит делать:
def factorial(n): global f res = 1 for i in range(2, n + 1): res *= i f = res n = int(input()) factorial(n) # дальше всякие действия с переменной f
Этот код написан плохо, потому что его трудно использовать ещё один раз. Если вам завтра понадобится в другой программе использовать функцию «факториал», то вы не сможете просто скопировать эту функцию отсюда и вставить в вашу новую программу. Вам придётся поменять то, как она возвращает посчитанное значение.
Гораздо лучше переписать этот пример так:
# начало куска кода, который можно копировать из программы в программу def factorial(n): res = 1 for i in range(2, n + 1): res *= i return res # конец куска кода n = int(input()) f = factorial(n) # дальше всякие действия с переменной f
Если нужно, чтобы функция вернула не одно значение, а два или более, то для этого функция может вернуть список из двух или нескольких значений:
return [a, b]
Тогда результат вызова функции можно будет использовать во множественном присваивании:
Источник: pythontutor.ru
Лабораторная работа по ассемблеру процедуры
Цель работы : получение навыков разработки структурной организации ассемблерных программ и ее реализации на основе аппарата процедур, изучение способов организации связи по данным между процедурами.
Лабораторное задание : разработать программу вычисления функции y=f(a,b,c,d,e). Значения аргументов a, b, c, d, e должны вводиться с клавиатуры ПЭВМ. Значение функции y следует вывести на экран дисплея.
Методические указания : для ввода-вывода числовых данных использовать следующий формат: ЗнЦЦЦ…Ц, где Ц – цифра (0…9), Зн – знак (+,-). Предусмотреть в программе вывод текста, содержащего вычисляемую функцию и формат аргументов, а также выдачу запроса на ввод каждого аргумента. Вычисление функции и преобразование вводимых и выводимых данных оформить в виде процедур: func – вычисление заданной функции, ascbin – преобразование числа из строки ASCII-кодов в двоичное число, binasc – преобразование числа, представленного в виде двоичного кода, в строку ASCII кодов.
Передача аргументов между вызывающей и вызываемой процедурами может осуществляться несколькими способами (или их комбинацией):
Источник: nervotrep.blogspot.com
Алгоритм вычисления значения функции F(n)
Формулировка задания: Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями. Чему равно значение функции F(K)? В ответе запишите только натуральное число.
Задание входит в ЕГЭ по информатике для 11 класса под номером 11 (Рекурсивные алгоритмы).
Рассмотрим, как решаются подобные задания на примере.
Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:
F(n) = F(n − 1) + 3 × F(n − 2) при n > 2.
Чему равно значение функции F(7)?
В ответе запишите только натуральное число.
Вычислим значения функции при n, начиная с единицы:
F(3) = F(2) + 3 ⋅ F(1) = 1 + 3 ⋅ 1 = 4
F(4) = F(3) + 3 ⋅ F(2) = 4 + 3 ⋅ 1 = 7
F(5) = F(4) + 3 ⋅ F(3) = 7 + 3 ⋅ 4 = 19
F(6) = F(5) + 3 ⋅ F(4) = 19 + 3 ⋅ 7 = 40
F(7) = F(6) + 3 ⋅ F(5) = 40 + 3 ⋅ 19 = 97
Таким образом, значение функции F(7) равно 97.
Поделитесь статьей с одноклассниками «Алгоритм вычисления значения функции F(n) – как решать».
При копировании материалов с сайта ссылка на источник обязательна. Уважайте труд людей, которые вам помогают.
Нашли ошибку? Выделите текст и нажмите Ctrl + Enter.
Источник: worksbase.ru