Как рассчитать объем колонки для динамика программа

В целях усовершенствования недорогой покупной акустической мультимедиа системы можно идти разными путями. Первый заключается в переделке корпуса.

На Руси никогда не переводились умельцы-самородки: Кулибин, Черепанов.
А сколько безызвестных! Подковать блоху аль смастерить паровую машину.
Да что угодно – тогда и поныне «голь на выдумку хитра».

В целях усовершенствования недорогой покупной акустической мультимедиа-системы можно идти разными путями. Первый заключается в переделке корпуса – она по силам многим «механикам», в домашнем арсенале которых дрель, напильник да пила.

Второй – в модернизации усилителя мощности и в улучшении разделительных фильтров: тут без хороших радиодеталей и дружных с паяльником рук «и ни туды, и ни сюды». Третий путь – наступление с двух направлений одновременно – требует сплава умения и знаний, а также недюжинного опыта. Рассмотрим первый подход – как наиболее доступный. Сразу предупреждаю: не затуманенные дурью мозги и школьный курс физики потребуются.

Как сделать хорошо звучащую АС своими руками?

Зачем переделывать корпус, если обученные инженеры-разработчики наверняка всю физику-акустику уже высчитали и размеры ящика колонки оптимизировали? – спросите вы, и будете правы лишь в том, что этим вопросом следует задаться в первую очередь. Замечу – здесь и далее по тексту под корпусом имеется в виду акустическое оформление, включающее в себя не только размеры, материалы и формы ящика, но и другие акустические элементы – например, фазоинвертор, который лихо добавляет ж а ру на басах.

Сегодня абсолютное большинство колонок, включая дорогущие Hi-Fi, выпускается, будучи пробуравленными фазоинверторами. В демократичной мультимедиа-акустике порты фазоинверторов представляют собой простейшие трубки, как правило, пластмассовые. Одним концом трубка выходит наружу, а другим – уходит в глубь корпуса. Такая вот вентиляционная дыра получается. О коварстве фазоинвертора уже был разговор ранее, так что сейчас продолжим его в новом свете.

Вместо теории

Так вот, инженеры-фирмачи, может быть, что-то и высчитывали, но руководствовались они, прежде всего, указанием свыше вписаться в требуемую себестоимость. К примеру, чтобы отпускная цена разрабатываемой акустики ни в коем случае не перешагнула 50 у.е. А изготовление правильного акустического оформления — дело хлопотное, влетающее в копеечку.

Если следовать канонам создания акустических систем, сначала выбирается низкочастотный динамик, экспериментально определяются упругость и гибкость его подвижной системы (самого подвеса и центрирующей гофрированной шайбы вместе взятых), затем вычисляются оптимальная упругость и гибкость воздуха в ящике и эффективный диаметр диффузора, после чего по некой эмпирической номограмме находится объём ящика. Иногда для прикидки объема закрытого ящика (в литрах) пользуются формулой 1 :

• Dэфф = (0,76..0,82)Dном – диаметр диффузора в сантиметрах без гофра подвеса;
• ся – гибкость воздуха в ящике (метр на Ньютон). Забегая наперед, отмечу, что для фазоинвертора типа «пассивный излучатель», не склонного к бубнению, эта составляющая равна примерно 0,7 от гибкости подвижной системы выбранного басового динамика 1 . Альтернативная методика нахождения объема пляшет от определения частоты собственного резонанса динамика.

Измерение параметров динамика и рассчет корпуса

Ясно, что чем больше диаметр низкочастотного диффузора, тем больше должен быть ящик. С гибкостью воздуха в ящике (которая обратно пропорциональна упругости) все гораздо сложнее. Дело в том, что резонансная частота динамика изменяется после установки его в конкретный корпус, который имеет свою частоту основного резонанса.

Если прикинуть упрощенно, то получается – чем мягче подвес диффузора, тем меньшего объема (в определенных пределах) можно сделать ящик колонки без нежелательных последствий для звука. Говоря о гибкости подвеса динамика, часто забывают о том, что она складывается из гибкости подвеса диффузора и гибкости центрирующей гофрированной шайбы, которая не дает катушке тереться о стенки магнита. Зная оптимальный объем ящика акустической системы, получаем возможность поиграться его размерами и формой.

Как правило, подобные «игры» на производстве недорогой мультимедийной акустики происходят жестким присмотром технологов. Вот так будем пилить – и все! Потому что так обрезков меньше! А вот так скреплять! И ни одним шурупом, ни каплей клея больше!

А то вдруг «не в духах» босс нагрянет и раздаст всем тумаков с ЦэУ в придачу – мол, тут пошире, тут поуже, а енту дырку вот здесь просверлить. И вообще, побольше-посолиднее соорудить, чтоб внушительнее (читай, дороже) смотрелось – раз плюнуть, а вот компактные качественные колонки – задачка многим не по зубам. Ну, и распилят-просверлят-соорудят, куда деваться-то, чай не эксклюзив за 1000 долларов за штуку, чтоб все по науке обосновывать.

Существует мнение о классическом соотношении размеров прямоугольного ящика: ширина – 1.41, глубина – 1, высота — 2 1 2 . Раньше не рекомендовали применять ящик, один из размеров которого превышает другой размер более чем в 3 раза (многие современные напольные Hi-Fi-колонки это игнорируют). Однако любой строго прямоугольный изнутри ящик неизбежно вносит ряд противных резонансов-горбов (~10 дБ от 100 до 8000 Гц) в АЧХ акустической системы, с которыми потом очень тяжело и дорого бороться «электрическими» методами.

Обычно резонансы глушат, распихивая по углам колонки что-нибудь мягкое звукопоглощающее, но при этом уменьшается свободный объем. Самый примитивный ящик – с точки зрения привносимых резонансов – кубический, с равными размерами. Зато у него минимальная площадь поверхности стенок, а значит, максимальная экономия древесного материала при распилке.

Идеальным в плане резонансов является шарообразный корпус-ящик. Гораздо меньше искажает частотный отклик прямоугольный ящик со скошенной по периметру передней частью (в своем роде приближение к сфере). Загвоздка в том, что изготовлять подобные корпуса из древесных материалов очень не технологично: много затрат. Скругленные внешние края (их благодатное влияние довольно скромно, да и то, в основном, на средние частоты) – еще делают, но не более.

Корпуса из технологичной (штампуй иль выдувай с тонкими стенками) пластмассы не способны обеспечить нужных акустических свойств. Сделать пластмассовую стенку толщиной, например, 2 сантиметра уже не так просто, как кажется, а главное – все равно «не в коня корм». Как уже говорилось, чтобы компактная колонка мощнее зазвучала на басах, приходится городить фазоинвертор.

Обычно он оформляется в виде врезанной в корпус трубы, причем не обязательно строго цилиндрической формы. По физической сути к фазоинвертору довольно близок пассивный излучатель типа мембраны на гибком подвесе, но расчет-настройка будут сложнее. Размеры фазоинвертора круглого сечения определяются, исходя из свободного объема (литражности) ящика и задаваемой резонансной частоты самого инвертора по неким, увы, эмпирическим номограммам. То есть точный аналитический расчет простейшего фазоинвертора настолько сложен, что, образно говоря, является причиной зубной боли даже для зубров акустики. Один из полуэмпирических расчетов фазоинвертора основан на определении акустической массы инвертора, которая вместе с гибкостью свободного объема ящика резонирует на частоте fb 1 :

где:
• L — кажущаяся длина фазоинвертора (включает толщину передней стенки и обычно превышает истинную длину круглой трубы где-то в полтора раза),
• S — площадь выходного отверстия,
• V — свободный объем ящика (за вычетом объема самого фазоинвертора)

Читайте также:
Технология приготовления блюд программа

Всё подставляется в единицах измерения СИ. С помощью этой формулы оценивают отношение длины к площади фазоинвертора, пренебрегая вычислением свободного объема и задавая просто внутренний объем ящика. Оценив размеры фазоинвертора, расчет уточняют.

Необходимо подчеркнуть, что строгое аналитическое решение очень сложно (а для нестационарных «прыжков» звукового сигнала и подавно), поэтому при расчетах пользуются разного рода допущениями. Итак, чем меньше частота настройки фазоинвертора, тем меньше должен быть его диаметр (или тем больше длина).

Диаметр не должен быть слишком малым, иначе могут возникнуть нелинейные искажения и призвуки. Если порт фазоинвертора делается некруглого сечения – например, щелевидный, – то, вероятно, придется прибегнуть к сложному профилированию со стороны входа. Обычно площадь проходного сечения фазоинвертора составляет 0.25 – 1.0 от эффективной площади диффузора.

Диаметр фазоинверторной трубы стараются выбрать из верхнего предела, то есть как можно более близким к эффективному диаметру диффузора. Если частота конструируемого фазоинвертора безапелляционно задана в требованиях свыше (или не может быть изменена по другим соображениям), то с увеличением его диаметра приходится увеличивать длину трубы. Большую длинную трубу проблематично втиснуть в ящик (нужен запас как минимум в 40 миллиметров), ведь его объем фактически уже зафиксирован выбранным динамиком. Более того, слишком длинная труба фазоинвертора может привести к увеличению неравномерности частотной характеристики акустической системы.

Кстати, следует различать понятия резонансной частоты ящика и резонансной частоты фазоинвертора. Чем меньше отношение гибкости воздуха в ящике к гибкости подвижной системы динамика, тем выше резонансная частота фазоинвертора будущей колонки по отношению к основному резонансу подвижной системы. То есть, если задать объем меньше, чем нужно, это приведет к повышению упругости воздуха в ящике и, следовательно, повышению резонанса колонки, выражающемуся в гулкости и акцентировании верхних басов. Пассивный излучатель нетрудно сделать из старого динамика, близкого по площади к диффузору рабочего низкочастотника. Настройку же проводить изменением присоединенной массы (десятки граммов).

При необходимости свободный объем корректируют заполнением части ящика не поглощающим звук материалом (например, пенопластом), или наоборот, облицуют стенки ящика звукопоглотителем (поролон, вата). Но шибко увлекаться подобной корректировкой не следует.

Немного практических советов

Частоту фазоинвертора в самопальном корпусе легко подстроить (в том числе, под конкретное помещение или индивидуальные пристрастия), вырезав трубу из картона с запасом по длине и постепенно укорачивая ее, согласуясь со слуховыми ощущениями. Согласно некоторым маститым рекомендациям, при расположении порта фазоинвертора на передней панели вместе с динамиками расстояние между ним и краями динамиков должно быть не менее 80 – 100 мм.

Наверное, именно поэтому так любят размещать порт на тыльной стороне колонки, ведь тогда вырисовывается экономия от более компактной лицевой панели. Однако существуют удачные решения, когда при определенных ухищрениях порт фазоинвертора буквально окружает басовый динамик. Хорошо зарекомендовали себя фазоинверторы, порт которых выведен либо на верхнюю, либо на нижнюю часть корпуса. Аналогично и для пассивного излучателя: например, Philips ныне умудряется делать супербасовитыми очень маленькие по объему колонки с верхним WOOX-излучателем.

Фазоинвертор стараются настроить так, чтобы его резонансная частота не отличалась от собственной резонансной частоты динамика (в свободном воздухе) более чем на 1/3 октавы, а еще лучше, чтобы совпадала. Но при этом следует учитывать зависимость от так называемой полной добротности динамика, являющейся ключевым параметром для всех расчетов и методик.

Источник: www.ferra.ru

Расчет закрытого ящика

Очень большое распространение в последние годы получили закрытые акустические системы, которые до недавнего времени были единственным видом АС для высококачественного воспроизведения как в нашей стране, так и за рубежом. И только в последние годы АС с фазоинвертором (АС с ФИ) и АС с пассивным излучателем (АС с ПИ) нарушили монополию закрытых АС.

Тем не менее акустическое оформление закрытый ящик и в настоящее время является одной из наиболее распространенных конструкций высококачественных АС в Западной Европе и довольно широко выпускаются в США, как это было видно из таблицы (данные 1984 года):

Страна Закрытые системы, % АС с фазоинвертором, % АС с пассивным излучателем, % Другие системы, %
США 42,7 32,4 8,6 16,3
Страны Западной европы 60,8 31,7 6,5 1,0
Япония 27,9 62,3 9,8

На рис. 1 представлена типичная закрытая АС.

Активный сабвуфер Tannoy TS2.8 в акустическом оформлении закрытый ящик

Преимущество закрытой АС заключается в том, что задняя поверхность диффузора головки не излучает и, таким образом, полностью отсутствует «акустическое короткое замыкание».

Недостатком закрытых АС является то, что диффузоры их головок нагружены дополнительной упругостью объема воздуха внутри оформления. Наличие дополнительной упругости приводит к повышению резонансной частоты подвижной системы головки в закрытом оформлении ω01 и, как следствие, к сужению снизу воспроизводимого диапазона частот. Значение дополнительной упругости объема воздуха SВ может быть найдено как:

где γ — показатель адиабаты, Sэфф — эффективная площадь диффузора головки, V — внутренний объем корпуса оформления.

Эффективной площадью диффузора считают 50–60 % его конструктивной площади. Для круглого диффузора диаметром d Sэфф=0,55S=0,44d 2 . Это эквивалентно тому, что эффективный диаметр диффузора составляет 0,8 от конструктивного диаметра. Упругость SВ суммируется с собственной упругостью подвеса подвижной системы головки S0 и в результате резонансная частота головки в закрытом оформлении вычисляется по формуле:

где m — масса подвижной системы головки.

Как видно из формулы 1, упругость воздушного объема внутри оформления обратно пропорциональна этому объему. Упругость подвижной системы можно также выразить через упругость некоторого эквивалентного объема воздуха VЭ, имеющего упругость S0. Отсюда резонансная частота головки в закрытом оформлении:

Чтобы резонансная частота все же не была чрезмерно высокой, иногда применяют головки с более тяжелой подвижной системой, что дозволяет несколько снизить резонансную частоту головки в закрытом оформлении, как это видно из формулы 2. Однако следует иметь в виду, что увеличение массы подвижной системы снижает чувствительность акустической системы, как это видно из формулы для стандартного звукового давления:

Формула расчета стандартного звукового давления

где A — частотно-независимый множитель, Rr — выходное сопротивление усилителя (генератора), Rk — активное сопротивление звуковой катушки, а — эффективный радиус головки.

Особенно малой эффективностью обладают так называемые малогабаритные акустические системы (MAC), у которых упругость объема внутри оформления существенно больше упругости закрепления подвижной системы головки.

Такие системы, у которых упругость подвижной системы определяется упругостью объема воздуха внутри оформления, называются системами «с компрессионным подвесом» головки.

Стандартное звуковое давление рст такой системы на частотах ω>ω01, где рст частотно-независимо, определяется так:

где Q01 — добротность головки в закрытом оформлении (методику измерения можно найти в статье «Измерение параметров Тиля-Смолла в домашних условиях»).

Как следует из формулы (4), неравномерность частотной характеристики закрытых акустических систем в области низких частот так же, как и открытых, определяется из добротностью (рис. 2.).

Частотная характеристика закрытой системы

При Q01011 и далее спад на резонансной частоте ω01. Неравномерность частотной характеристики при этом определяется подъемом на пике ω1, и спадом на резонансной частоте ω01. При Q01>1 неравномерность частотной характеристики определяется только ликом на частоте ω1 относительно горизонтальной части характеристики.

Читайте также:
Инструментальные программы это в информатике

Неравномерность частотной характеристики в зависимости от добротности закрытой АС приведена на рис. 3.

Неравномерность частотной характеристики в зависимости от добротности закрытой АС

Как следует из рисунка, минимальная неравномерность частотной характеристики закрытых АС имеет место при добротности Q01=1 и составляет 1,3 дБ. Желательная же добротность самой головки находится из условия:

Исследования показали, что добротность головок, предназначенных для закрытых АС, не должна превышать 0,8–1.

В противном случае головка получается «раздемпфированной». Это означает, что при ее возбуждении, т.е. при подаче на нее напряжения музыкальной или речевой программы, головка помимо колебаний в такт с поданным напряжением будет колебаться и с частотой собственных колебаний, близкой к резонансной частоте.

Для слушателей это будет проявляться в том, что к звучанию программы будет примешиваться звучание этой частоты как своего рода «гудение», «нечистота» низких тонов. Отметим также, что если головка помещена в закрытом ящике, ухудшается равномерность частотной характеристики в области средних и высоких частот из-за резонансных явлений в оформлении.

Для их устранения внутренние поверхности (особенно заднюю стенку) покрывают звукопоглощающим материалом и заполняют им часть объема. Кроме того, заполнением внутреннего объема рыхлым звукопоглощающим материалом преследуют и другую цель — изменить термодинамический процесс сжатия-расширения воздуха в оформлении.

Без заполнения процесс сжатия-расширения воздуха внутри оформления адиабатический. Заполняя оформление рыхлым звукопоглощающим материалом можно сделать так, чтобы адиабатический процесс сменился на изотермический.

В этом случае внутренний объем оформления как бы увеличивается в 1,4 раза, так как коэффициент γ в формуле (1), составляющий 1,4 для адиабаты, заменяется значением, равным единице для изотермы. Соответственно снижается и резонансная частота закрытой АС.

Это снижение в пределе (для компрессионной АС) достигает √1,4, так как для нее можно пренебречь упругостью подвеса головки. В противном случае резонансная частота головки ω01’ может быть найдена как:

Как практически определить, что изотермический процесс сжатия-расширения воздуха внутри оформления достигнут?

Процесс будет достигнут, если при добавлении внутрь оформления новой порции рыхлого звукопоглощающего материала резонансная частота закрытой АС уже не понижается. Исследования авторов показали, что заполнять внутренний объем оформления более, чем на 60%, нецелесообразно.

Вместе с тем количество рыхлого звукопоглощающего материала не должно быть чрезмерным, чтобы активные акустические потери в оформлении и заполнении не были значительны.

Следует отметить, что степень влияния активных акустических потерь в оформлении (и заполнении) на ход частотной характеристики зависит, строго говоря, не от их абсолютных значений, а от соотношения активных акустических потерь в оформлении и полных потерь в головке.

Потери в головке — это собственные акустико-механические активные потери (r0) на внутреннее трение в материале головки, трение о воздух при работе, потери в виде активной составляющей сопротивления излучения и т.д., а также «вносимые» в головку потери (rвн). Авторы рекомендуют следующий критерий допустимости активных потерь в оформлении и заполнении ящика:

где rоф и rзап — активные акустические потери в оформлении и в заполнении соответственно. При меньше соотношении потерь акустическая система должна быть переделена, вплоть до замены акустического оформления.

Чрезмерные активные акустические потери могут быть в АС при некачественном (с акустической точки зрения) выполнении корпуса оформления, креплении головки, при чрезмерном заполнении оформления звукопоглощающим материалом, а также при чрезмерно малых внутренних объемов оформления (Vэ/V>8).

В заключение для быстрого расчета закрытых АС предлагается графический метод. По графикам на рис. 5–9 можно для заданной головки с присущими её параметрами подобрать рациональное оформление, и наоборот, по заданному оформлению выбрать подходящую головку.

Расчет закрытого ящика

Рисунок 5, на котором показана зависимость ω01/ω0 от Vэ/V — общий при расчете.

На рисунках 6–9 выбирается один — в зависимости от добротности применяемой головки (от 0,4 до 0,8). На этих рисунках представлены семейства кривых зависимости Vэ/V от ωrp/ω0, где ωrp — нижняя граничная частота воспроизводимого диапазона. Параметром системы является значение спада частотной харакетристики (дБ) на частоте ωrp.

Кроме того, на каждом графике справа нанесена дополнительная ось, по которой отложено значение √(1+Vэфф/V), с помощью которого можно рассчитать звуковое давление закрытого ящика на горизонтальной части характеристики (формула (6)) в виде рст = А(1+Vэфф/V), А = 2,65*10 -3 √(f 3 01V/Q01) легко вычисляется для заданной головки, так как ω0, Vэ и Q — параметры головки.

Расчет закрытого ящика Расчет закрытого ящика

Рис. 7. Зависимость Vэ/V от ωrp/ω0 при Q =0,5.

Расчет закрытого ящика

Рис. 8. Зависимость Vэ/V от ωrp/ω0 при Q =0,6.

Расчет закрытого ящика

Рис. 9. Зависимость Vэ/V от ωrp/ω0 при Q =0,7.

Примеры расчета закрытого ящика

Пример №1. Пусть, например используется динамик с параметрами f0=30 Гц, Q=0,4, Vэ=60 л. Находим предварительное А = 2,65*10 -3 √(30 3 *100*10 -3 /0,4)=0,218.

Пусть требуется подобрать для этого динамика объем оформления V, при котором спад частотной характеристики должен составлять 6 Дб на граничной частоте АС fгр=40 Гц.

По рисунку 6 из точки ωrp/ω0 = 40*30=1,33 на горизонтальной оси восстанавливаем ординату до пересечения с кривой с отметкой 6 Дб и из этой точки проводим прямую параллельную оси абсцисс до пересечения с кривой V/Vэ. Получаем V/Vэ = 0,95.Отсюда V = 0,95 Vэ= 0,95*100=95 л. Этому значению V/Vэ по правой вертикальной оси значение √(1+V/Vэ)=1,4. Следовательно, pст = 2,18*1,4=0,305 Па. По графику на рисунке 5 находим соотношение ωrp/ω0=f01/f0=1,4. Отсюда f01 = 1,4f0=1,4*30=42 Гц.

Пример №2. Рассчитывать закрытый ящик можно не только по графикам, но и по приведенным формулам. Пусть, например, требуется рассчитать объем закрытого ящика АС с нижней граничной частотой 50Гц, имеющих головку 10ГД-36 (f0=38 Гц, Q=0,8, Vэ=60 л).

  1. Определяем объем оформления из формулы (3): V = 60/(50/38) 2 -1)= 83 л.
  2. Находим добротность динамика в закрытом ящике из формулы (6): Q01=0.8√(1+60/83) = 1.05
  3. В соответствие с рис. 3 минимальная неравномерность частотной характеристики имеет место при Q0=1. Так что полученная неравномерность частотной характеристики из-за пика на частоте ω1 практически минимальна и составляет всего около 1,5дБ.

Калькулятор расчета закрытого ящика

В калькуляторе Параметры набирать через точку, ноль перед точкой вводить не обязательно.

Источник: baseacoustica.ru

Как рассчитать объем колонки для динамика программа

Акустическое оформление типа закрытый ящик

20 декабря 2019
Преимущество закрытого ящика (ЗЯ) заключается в том, что задняя поверхность диффузора динамической головки не излучает в пространство вне АС. Таким образом, полностью отсутствует «акустическое короткое замыкание», следствием чего является минимальный уровень искажений, вносимых корпусом в итоговое звучание акустической системы, по сравнению с другими типами акустического оформления (при условии достаточной жёсткости корпуса, разумеется).

Недостатком закрытых АС является то, что диффузоры их головок нагружены дополнительной упругостью объема воздуха внутри корпуса. Наличие дополнительной упругости приводит к повышению резонансной частоты подвижной системы головки в закрытом оформлении и, как следствие, к сужению воспроизводимого диапазона частот снизу. При размещении динамической головки в закрытом ящике, повышаются требования к корпусу АС. В общем случае можно сказать, что в закрытом оформлении ухудшается равномерность частотной характеристики АС в области средних и высоких частот из-за резонансных явлений в оформлении. Существенным минусом также является более низкий КПД ЗЯ, по сравнению с другими вариантами оформления.

Если вам неизвестны TS-параметры динамика, то объёмы ЗЯ, мало сдвигающего частоту основного резонанса, можно примерно рассчитать в зависимости от эффективного диаметра диффузора, по эмпирической формуле:

Читайте также:
Archlinux как установить программу

V = 125 · D 2 [см 3 ]

Здесь:
D — эффективный диаметр диффузора [см].
При измерении этого показателя подвес в расчёт не берётся, поэтому обычно D ~ 80-85% от установочного диаметра динамика.
Глубина диффузора влияет на эффективный диаметр. Более глубокий диффузор даст большую площадь диффузора с тем же диаметром.
Именно поэтому встречается разная эффективная площадь у динамиков одинаковых по диаметру — те которые имеют большую эффективную площадь обычно либо более глубокие, либо имеют меньший подвес, что увеличивает их эффективную площадь.

Для более точного расчёта необходимо знать хотя бы два TS-параметра используемой динамической головки, а именно:
Vas — эквивалентный объём,
fs — собственная резонансная частота

Зная эквивалентный объём динамической головки и её собственную резонансную частоту, можно рассчитать резонансную частоту fс закрытого оформления заданного объема V:

Из этой формулы вытекает, что частота резонанса закрытой АС объёмом V = Vas, возрастает в 1.41 раза, т.е. fc = 1.41 · fs, а в корпусе вдвое меньше Vas — в 1.73 раза, и т.д.

Если собственная резонансная частота неизвестна, можно разместить излучатель в ящик, внутренний объём которого рассчитан по приближённой формуле (90-100) · D 2 и измерить резонансную частоту получившегося оформления.

После этого, зная fc, из предыдущей формулы можно будет вывести собственную резонансную частоту динамической головки без оформления fs.

Если же неизвестен эквивалентный объём, зная fc в объёме V и собственную частоту fs, определить эквивалентный объём можно по формуле:

Для приблизительного расчёта закрытого ящика этих параметров зачастую бывает достаточно. Однако, если вам необходимо более точно рассчитать корпус, необходимо будет также учесть и полную добрость АС, так как она влияет на резонансную частоту АС. Для дальнейших расчётов уже необходимо знать собственную добротность динамической головки.

Известно, что минимальная неравномерность частотной характеристики закрытых АС имеет место при полной добротности АС Qtc = 1 и составляет 1,3 дБ.

При проектировании сабвуфера нужно помнить, что собственная полная добротность НЧ-головки предназначенной для закрытых АС (с учётом сопротивления индуктивности кроссовера, соединительного кабеля и выходного сопротивления УМЗЧ), не должна превышать 0.8-1.1. В противном случае АС будет раздемпфированной и объём воздуха практически не будет оказывать влияния на динамик. Это означает, что при подаче сигнала, в колебания головки, помимо колебаний с частотой сигнала, будут подмешиваться и колебания и с частотой собственных колебаний, близкой к резонансной частоте. Для слушателей это будет проявляться в том, что к звучанию программы будет примешиваться звучание этой частоты как своего рода «гудение», «нечистота» низких тонов.

Аналогичная ситуация складывается, если объем ящика превышает эквивалентный объем динамика втрое или больше. Если такое соотношение выполняется, резонансная частота и полная добротность системы останутся практически такими же, какими они были у динамика без оформления. На практике такая конфигурация практически не используется.

Как уже было показано выше, с уменьшением объема добротность системы и ее резонансная частота растут одинаково. Связь резонансной частоты закрытой АС, добротности и экивалентного объема легко проиллюстрировать следующей таблицей:

Рост резонансной
частоты и добротности АС Уменьшение объёма относительно
эквивалентного объёма динамика
1.41x 1
1,73x 1/2
2x 1/3
3x 1/8

Как видно, слишком малый ящик вызовет значительное повышение резонансной частоты и смещение звучания в более высокую часть спектра, чего следует избегать.

При проектировании корпуса для СЧ-динамиков следует иметь ввиду, что мидвуфер (в силу законов физики), имеет сужение диаграммы направленности выше частоты, которая определяется размерами его излучающей поверхности. В идеальном случае можно считать, что эта частота составляет c/d, где c – скорость звука в воздушной среде (345 м/с), d – эффективный диаметр диффузора (в метрах). Разумеется, данное обстоятельство актуально для любых АС, использующих динамические головки в качестве излучателей, а не только для ЗЯ. Для сабвуфера же, измеряемая ширина диаграммы направленности имеет меньшее значение по той причине, что человек не способен точно определить положение источника звука низкой частоты в силу физиологии.

Итак, при проектировании необходимо стремиться обеспечить полную добротность акустической системы Qtc ~ 1.

Для рассчёта Qtc, можно воспользоваться соотношением резонансной частоты итоговой АС (полученной на предыдущем шаге) и резонансной частоты динамической головки (fc/fs):

Здесь:
Qtc — полная добротность АС,
Qts — полная добротность динамической головки,
fc — резонансная частота готовой АС,
fs — собственная резонансная частота динамической головки.

Также, можно использовать и другие соотношения, например:

Если неизвестен эквивалентный объём головки, можно воспользовать ещё одной формулой, однако это потребует измерения упрогости подвеса динамика:

Здесь:
S0 и SB — упругость * подвижной системы головки и воздуха в ящике, соответственно.
* упругость — величина обратная гибкости (в академических материалах чаще можно встретить формулы для расчёта последней).

Значение дополнительной упругости объема воздуха Sb рассчитывается по следующей формуле:

Здесь:
ϒ — показатель адиабаты (табличное значение, для сухого воздуха ~1.4),
ρ0 — удельное акустическое сопротивление среды (для воздуха при 20°C ~ 415 кг/с·м 3 ),
Sэфф — эффективная площадь диффузора головки,
V — внутренний объем корпуса оформления.

Значение упрогости подвижной системы головки можно определить, нагружая её диффузор дополнительным весом и измеряя изменения её резонансной частоты без акустического оформления, по формуле:

Здесь:
М – масса прикреплённого вблизи звуковой катушки груза [кг],
f’s — резонансная частота головки с дополнительным грузом [Гц].
Для измерений удобно использовать советские копейки 1-5 коп., выпускавшиеся после 61-ого, так как их вес был равен номиналу.

Таким образом, используя одну из приведённых выше формул (в зависимости от имеющихся данных), можно рассчитать итоговую добрость АС.

В конечном итоге, если известны все три TS-параметра динамика, для расчёта закрытого корпуса, фактически необходимо решить следующую систему уравнений:

Однако, есть ещё несколько существенных нюансов.

Как уже было отмечено, при размещении динамической головки в закрытом ящике малого объёма, ухудшается равномерность частотной характеристики в области средних и высоких частот из-за резонансных явлений в оформлении. Для устранения этого эффекта внутренние поверхности (особенно заднюю стенку) покрывают звукопоглощающим материалом и заполняют им часть объема, а сами стенки выполняют как можно более жёсткими и массивными. Кроме того, заполнением внутреннего объема рыхлым звукопоглощающим материалом преследуют и другую цель — изменить термодинамический процесс сжатия-расширения воздуха в оформлении.

Без заполнения процесс сжатия-расширения воздуха внутри оформления адиабатический. Заполняя оформление рыхлым звукопоглощающим материалом можно сделать так, чтобы адиабатический процесс сместился ближе к изотермическому. В этом случае внутренний объем оформления как бы увеличивается в 1.4 раза, так как коэффициент ϒ в последней формуле, заменяется на единицу (для изотермы). Соответственно снижается и резонансная частота закрытой АС.

Практически можно определить, что изотермический процесс сжатия-расширения воздуха внутри оформления достигнут, если при добавлении внутрь оформления новой порции рыхлого звукопоглощающего материала резонансная частота закрытой АС уже не понижается.

Эмпирическим путём установлено, что заполнять внутренний объем оформления более, чем на 50%, нецелесообразно.

  1. Бытовые акустические системы (В.К. Иофе, М.В. Лизунков, 1984 г.)
  2. www.ptc73.ru — Расчёт живого звука

Источник: chipinfo.pro

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru