Как работает программа распознавания лиц

У вас в телефоне наверняка уже есть технология распознавания лиц. Ещё она есть в городских камерах наблюдения, на заводах и военных объектах, в лабораториях и даже в автомобилях. Посмотрим, как они устроены.

Из чего состоит распознавание лиц

Чтобы машина узнала лицо с помощью камеры, нужны такие компоненты:

  1. Оптическая камера или лидар, чтобы получить изображение или объёмную карту лица.
  2. База данных с заранее проанализированными лицами.
  3. Алгоритм, который находит в кадре лицо.
  4. Алгоритм приведения лица к какому-то набору векторов.
  5. Алгоритм сравнения векторов с эталонами.

Теперь посмотрим детали.

Получаем изображение с камеры

Это самая простая часть, которая может даже не зависеть от алгоритма распознавания лиц. Задача компьютера — взять видеопоток с камеры, в реальном времени нарезать его на несколько кадров и эти кадры отправить в алгоритм.

Некоторые алгоритмы используют плоское изображение с камеры. Другие используют лидары — это когда лазерная пушка быстро-быстро стреляет лазером во все стороны и измеряет скорость возвращения лучей. Получается не слишком точная, но в некоторой степени объёмная картинка. Часто её совмещают с изображением основной камеры, чтобы убедиться, что перед нами действительно человек, а не его фотография.

Как работает РАСПОЗНАВАНИЕ ЛИЦ? | РАЗБОР

Иногда алгоритм настроен так, чтобы получать только подвижные изображения с меняющейся мимикой — чтобы не сканировали спящих людей или маски.

Некоторые алгоритмы вычисляют трёхмерную модель на основании поворота головы. Прямо говорят: посмотрите налево, посмотрите направо, приблизьтесь, отдалитесь. Так они пытаются построить более точную объёмную модель лица. Всё это — для безопасности.

Как работает распознавание лиц

Находим лицо в кадре

Перед тем как алгоритм приступит к распознаванию, ему нужно найти лицо на картинке. Для этого он использует метод Виолы — Джонса и специальные чёрно-белые прямоугольники (примитивы Хаара), которые выглядят примерно так:

Как работает распознавание лиц

С помощью этих прямоугольников алгоритм пытается найти на картинке похожие переходы между светлыми и тёмными областями. Если в одном месте программа находит много таких совпадений, то, скорее всего, это лицо человека. Например, вот как с помощью этих примитивов алгоритм находит нос и глаза:

Как работает распознавание лиц

Все примитивы специально подобраны так, чтобы с их помощью можно было найти границы лица и отсечь всё остальное. Поэтому, как только алгоритм находит место скопления таких совпадений, он для проверки сравнивает там остальные прямоугольники:

Знай! / Как работают системы распознавания лиц?

Как работает распознавание лиц

Если их набирается достаточное количество — это точно лицо. Обычно алгоритмы поиска лиц для контроля обводят рамкой найденную область — она помогает разработчикам понять, всё ли в порядке с логикой программы:

Как работает распознавание лиц

Строим модель по ключевым точкам

После того как алгоритм нашёл лицо, он строит его цифровую модель. Для этого он:

  • Расставляет точки в ключевых местах: нос, рот, глаза, брови и так далее.
  • Считает расстояние между точками.
  • По этим расстояниям строит цифровую карту или вектор. Про векторы поговорим ниже.

Как работает распознавание лиц

От того, как будут расставлены эти точки, зависит точность распознавания, поэтому каждая коммерческая компания держит свой метод в секрете. Чем больше точек — тем выше точность, но минимально нужно проставить 68 точек. Если точек будет меньше, алгоритм может не сработать.

Считаем вектор и сравниваем с базой

Когда все точки найдены, алгоритм считает вектор — математический результат обработки свойств этих точек. Например, он находит расстояние между глазами, форму носа, толщину губ, форму бровей, расстояния между ними и ещё массу других параметров. В результате получается набор чисел, который называется вектором.

Если алгоритм работает в режиме «выучить новое лицо», то он записывает полученный вектор в базу данных с каким-то именем или идентификатором. Условно говоря, в базе это выглядит так:

«Вот здоровенный вектор из 900 чисел — я назову его Мишей»

Как работает распознавание лиц

Другой режим работы алгоритма — сопоставление с эталоном. В базе данных уже есть один или несколько векторов, а задача алгоритма — сравнить их с новым вектором, который посчитали только что по картинке с камеры. Тогда алгоритм считает, насколько новый вектор отличается от тех, которые уже лежат в базе данных. Если этот вектор отличается достаточно мало, считаем, что мы распознали лицо.

На картинке видно, что синий неизвестный вектор, который мы хотим распознать, ближе всех находится к Мише. Если расстояние между векторами будет достаточно маленьким, алгоритм скажет, что человек в кадре — это Миша.

Как работает распознавание лиц

У каждого алгоритма свои коэффициенты совпадения: где-то допустимо совпадение только на 98% и выше — тогда алгоритм не будет вас узнавать, если вы в маске или вокруг плохое освещение. Есть алгоритмы, где совпадение может быть меньше — тогда это менее безопасно, но лучше работает. Есть алгоритмы, которые в одном месте требуют точного совпадения, а в других — менее точного (например, глаза должны совпасть точно, а рот может двигаться). Это уже нюансы настройки и подкрутки конкретного алгоритма.

Читайте также:
Как установить на Андроид программу market

Уточнение векторов и самообучение

Есть алгоритмы, которые уточняются и узнают вас всё лучше со временем. При каждом распознавании лица они видят, что в вас изменилось с прошлого раза, и уточняют свою модель. Например, вы занесли себя в базу данных с бодуна, а на следующий день пришли огурцом. Алгоритм запомнил вас в обоих состояниях.

Что дальше

Теперь, когда мы знаем, как работает эта технология, попробуем повторить это сами — сделаем систему распознавания лиц на Python.

Апскиллинг, как говорится

Апскиллинг — это, например, переход с уровня junior на уровень middle, а потом — senior. У «Яндекс Практикума» есть курсы ровно для этого: от алгоритмов и типов данных до модных фреймворков.

Апскиллинг, как говорится Апскиллинг, как говорится Апскиллинг, как говорится Апскиллинг, как говорится

Получите ИТ-профессию

В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.

Источник: thecode.media

Как работает распознавание лиц? Разбор

Среднестатистический человек может идентифицировать знакомое лицо в толпе с точностью 97,53%. Вы скажете, это немало и будете правы. Но это ничто по сравнению с современными алгоритмами, которые добились точности 99,8% еще в 2014 году. А в последние несколько лет они достигли практически совершенства! Современный алгоритм, использующийся в камерах видеонаблюдения в Москве способен обрабатывать 1 миллиард изображений менее чем за полсекунды с точностью близкой к 100%.

Этот алгоритм насколько крут, что уже в этом году в Московском Метро планируют ввести систему прохода по лицу — FacePay. При этом нам обещают, что система будет работать даже если человек в медицинской маске.

Как вы понимаете, жизнь уже не будет прежней. Поэтому давайте разберемся:

  • Как работают алгоритмы распознавания лиц?
  • Страшны ли эти алгоритмы на самом деле и где их применяют во благо?
  • А также поговорим какого будущего нам ждать.

Причины

  1. Появились действительно мощные компьютеры, способные справиться с задачей. За это спасибо закону Мура.
  2. Появились базы данных с нашими с вами фотографиями. За что спасибо социальным сетям.
  3. Ну и конечно, произошел прорыв в области нейросетей.

Этап 1. Обнаружение

В первую очередь, для того, чтобы лицо распознать, надо его сначала обнаружить. Задача на самом деле не тривиальная. Для этого мы бы могли использовать натренированные нейросети, но это слишком долго, дорого и ресурсоемко. Поэтому для обнаружения лица используется очень простой метод Виолы — Джонса, разработанный еще в 2001 году.

Как эта штука работает?

Этот алгоритм просто сканирует изображение при помощи вот таких прямоугольников, они называются примитивами Хаара:

И еще вот таких прямоугольников:

Задача этих объектов — находить более светлые и темные области на изображении, характерных конкретно для человеческих лиц.

Например, если усреднить значения яркости область глаз будет темнее щек или лба, а переносица будет светлее бровей.

В общем таких характерных признаков много и естественно не только у человеческих лиц могут быть подобные паттерны. Поэтому алгоритм работает в несколько этапов:

Сначала находится первый признак, система понимает: «В этой области может быть лицо». Тогда она начинает там же искать второй признак, а потом третий. И если в одной области найдено 3 признака, уже можно уверенно сказать — да, это лицо! После чего система получает область изображения, в котором есть только лицо.

Этап 2. Антропометрические точки

Получив область для анализа, дальше в дело вступает главный секрет каждой системы распознавания — биометрический алгоритм.

Он расставляет на лице антропометрические точки, по которым впоследствии и будут вычисляться индивидуальные характеристики человека: разрез глаз, форма носа, подбородка, расстояние между ними и прочее. Таких признаков может быть много, вплоть до нескольких тысяч. Но в целом, таких точек должно быть как минимум 68.

Этап 3. Исправление искажений

А дальше начинается настоящая магия. В идеале нам нужно лицо, которое смотрит анфас, то есть прямо в камеру. Но такая удача бывает редко, особенно если речь идет о распознавании человека в толпе.

Поэтому система производит дополнительное преобразование изображения: устранятся поворот и наклон головы. А также проводится 3D-реконструкция лица из 2D-изображения. Таким образом, даже если человек на изображении смотрел вбок, мы всё равно можем получить четкий фронтальный снимок, что существенно повышает качество распознавания.

Этап 4. Вектор лица

Ну а дальше происходит самое главное. В бой вступает нейросеть, которая присваивает каждому лицу вектор признаков. Что это такое?

По сути, это просто какое-то число, которое складывается из суммы характеристик лица: расстояний между опорными точками, текстуры определенных областей на лице и прочее. Таких характеристик может быть множество. Основное правило: они должны описывать лицо независимо от посторонних факторов: макияжа, прически, возрастных изменений.

Этап 5. Идентификация

Ну а дальше остаётся сравнить полученный вектор с базой других векторов. И готово. Система вас идентифицировала.

Где и как используется?

Помимо очевидных кейсов применения, помимо обнаружения правонарушителей в общественных пространствах и оплаты билетов в метро. Где и как могут применяться эти технологии?

Во-первых, системы могут быть настроены не на идентификацию а на анализ поведения или настроения. В такси можно можно быстро вычислять неадекватных водителей или пассажиров. В магазинах, можно находить грустных покупателей и повышать уровень сервиса.

Ритейлеры одежды или продуктовые магазины используют камеры для анализа поведения покупателя, чтобы проанализировать настроение покупателя на кассе. Или например в школах, можно искать скучающих детей и корректировать программу обучения. Так, кстати уже делают в Китае. Вот такой мир будущего, и мы уже в нём живём не зная этого.

Читайте также:
Структура программы переменные и константы типы переменных

Что будет в будущем?

Чего же нам ждать в будущем? Распознавание лиц для разблокировки iPhone, входа в Windows или во время конференций — это прекрасная, удобная технология, упрощающая жизнь и мы уже ей пользуемся. Но вот повсеместные камеры наблюдения в городах рисуют в воображении самые мрачные картины в духе Джорджа Оруэлла.

Отсюда возникает вопрос — можно ли защитить себя от систем видеонаблюдения? Конечно, с развитием технологий развиваются и средства обхода этих технологий.

Люди придумывают макияж и украшения, которые сбивают с толку алгоритм обнаружения лиц, тот самый из 2001 года, создают инфракрасные очки, засвечивающие сенсоры камер, а также делают всякую криповую одежду и маски.

Но по большому счету такой лук скорее больше привлечет внимания, а алгоритмы подстроятся под обманки. Поэтому единственный способ защиты — это закон. Бизнес активно не внедряет системы распознавания лиц только потому, что это несет большие юридические издержки. В ЕС активно разрабатывается новый закон, который уже прозвали GDPR 2: он будет строго регулировать системы распознавания лиц и прочие системы искусственного интеллекта, вызывающие законные опасения.

В России с этим пока что не так хорошо. Тем не менее отечественные компании, которые присутствуют на международном рынке также будут вынуждены соблюдать новые правила игры, как произошло с первым GDPR.

То есть, как вы поняли, есть светлая сторона технологии, которая упрощает нам жизнь и темная, что приближает нас к миру большого брата.

  • Блог компании Droider.Ru
  • Поисковые технологии
  • Алгоритмы
  • Софт
  • Фототехника

Источник: habr.com

Распознавание лиц системой видеонаблюдения — необходимость, а не роскошь

Функции современных систем видеонаблюдения уже давно не исчерпываются только контролем доступа на объект и отслеживанием перемещений посетителей. По мере расширения технических возможностей системы слежения получили возможность распознавать и идентифицировать лица даже в плотном потоке людей, при затрудненных условиях съемки.

Функции современных систем видеонаблюдения уже давно не исчерпываются только контролем доступа на объект и отслеживанием перемещений посетителей. По мере расширения технических возможностей системы слежения получили возможность распознавать и идентифицировать лица даже в плотном потоке людей, при затрудненных условиях съемки. Такая аналитика требуется в следующих системах:

  • система контроля управления доступом — видеонаблюдение считается частью системы безопасности и управляет турникетами на проходной. Главная ее функция — снижение количества аварий и происшествий благодаря исключению человеческого фактора и улучшению трудовой дисциплины,
  • системы безопасности и противодействия краж в супермаркетах и других торговых помещениях — кражи в магазинах не всегда спонтанны. Часто их совершают систематически одни и те же люди, и отслеживание их появления еще на входе помогает предотвратить очередное хищение,
  • фейс-контроль в развлекательных заведениях — информация от входа может передаваться прямо на мобильное устройство владельца, что поможет установить дополнительный контроль за действиями охранников.

Задачи распознавания лиц

Перед современной системой распознавания лиц стоит несколько задач:

  • организовать систему управления доступом,
  • найти на территории незнакомцев, которых нет в базе,
  • сканирование пешеходного потока в поисках нужного лица, занесенного в базу,
  • поиск человека в так называемой чистой зоне, например проходной — когда человек сам хочет, чтобы система опознала его и впустила.

Как работает система распознавания лиц

Принцип работы распознавания лиц прост, независимо от выбранного алгоритма: система получает отсканированное изображение лица гостя и сравнивает его с эталонными картинками, которые уже хранятся в базе. Учитываются косметические изменения во внешности: макияж, борода, очки, стрижка. Важна и скорость реакции системы: на сканирование лица, поиск аналогий и получение отклика от базы данных должен пройти период времени, примерно равный времени, за который человек пройдет от двери к пропускной системе.

Специалисты используют три популярные схемы для подключения системы распознавания:

  • самая популярная — IP-камера снимает поток людей на видео и передает картинку на сервер, где происходит обработка информации, сравнение отсканированных лиц с имеющимися в базе и формирование аналитического отчета для оператора. Недостаток такой системы — ограниченность сервера, число камер, подключенных к нему, не безгранично. Больших затрат потребует покупка серверного оборудования и поддержание его в рабочем состоянии.
  • IP-камера сама анализирует поток, а на сервер передаются уже обработанные данные. К серверу предъявляются гораздо меньшие требования, чем в предыдущем варианте, зато возрастает список технических параметров, которым должна соответствовать камера. Цена таких камер значительно выше, чем у моделей более низкого класса.
  • обычная видеокамера встраивается в устройство контроля доступом, которое сканирует видеопоток, распознает лица и кроме этого, управляет доступом на объект — открывает и закрывает дверь или турникет. Такие устройства эффективно работают только в помещениях, но зато имеют сравнительно невысокую стоимость.

Три главных параметра, от которых зависит эффективность функционирования системы распознавания лиц: быстрый отклик система, точность алгоритма распознавания, широта базы данных с эталонами.

Алгоритмы распознавания

Системы безопасности используют разные методы распознавания человеческой внешности, причем идеального пока не найдено — у каждого есть свои плюсы и минусы.

Нейронные сети — популярный метод, позволяющий получить качественное распознавание в течение короткого времени. Сканирование лица имеет много слоев, благодаря этому система быстро находит соответствие в своей базе данных. Есть и недостатки:

  • новый эталон добавить в базу очень сложно, это потребует переобучения всей сети,
  • внесение изменений параметров может длиться до нескольких дней,
  • функции распознания нуждаются в выстраивании, так как параметры алгоритма распознавания до конца не формализованы.

Скрытые Марковские модели. В их основе лежит статистическое сравнение полученных изображений с эталонами. У этого метода есть несколько существенных недостатков, что снижает его популярность:

  • имеет большое время отклика — вызвано тем, что система подбирает дополнительную модель для сравнения,
  • система легко может спутать похожих людей, так как имеет низкую способность к различению,
  • долгий и несовершенный алгоритм обучения,
  • время на перебор моделей в базе данных нельзя сократить.
Читайте также:
Недостатки программы мастер тур

Гибкое сравнение на графах. Этот метод использует в качестве вспомогательного способа 2D-моделирование. Система составляет графы — двухмерные модели лиц, которые выглядят как сетка с индивидуальным расположением ребер и вершин. Эталонный граф, который демонстрирует главный параметр распознавания, остается неизменным, а другие меняются в структуре лица.

При этом учитываются основные антропометрические точки, которые в течение жизни не меняются: расстояние между ушами и глазами, ширина носа или губ. Подробные модели с большим количеством точек позволяют распознать лицо как можно точнее, но в этом случае увеличится и время отклика системы.

Сложность процесса распознавания привела к необходимости для работы такой системы мощных компьютеров. Как и при других алгоритмах, внедрение новых эталонов в базу требует сил и времени, а чем обширнее база эталонов, тем дольше обрабатывает их система.

Основа системы распознавания лиц — умные камеры

IP-камеры отвечают за сканирование лица нового посетителя, обработку полученной модели и отклика от системы. Специфические характеристики камер делят их на несколько видов в зависимости от функции, которую они выполняют в системе:

  • обнаружение объекта — выступают своего рода “сторожами” подконтрольной территории. Они не распознают лица, а лишь наводят на объект умные видеокамеры с более совершенными техническими характеристиками, которые и сканируют биометрические параметры гостя. Их устанавливают при входе на территорию для фиксации посетителей, используют для общей видеосъемки. Технические их характеристики далеки от совершенства: фокусное расстояние до 1 мм, разрешение от 1 Мрх, но этого для обнаружения проникновения на объект вполне достаточно.
  • опознание — берут за основу 3-4 основных биометрических параметра, по которому и осуществляется сканирование. Фокусное расстояние доходит до 6 мм, разрешение стартует от 2 Мрх.
  • Идентификация — такие камеры делают детальное сканирование лица по нескольким параметрам, чтобы полученное изображение высокого качества могло использоваться в более совершенной системе распознавания лиц. Фокусное расстояние колеблется от 8 до 12 мм, а разрешение – от 5 Мрх.

Кроме фокусного расстояния и разрешения, на качество распознавания влияют количество источников света, адаптация камеры к плохому освещению, место ее установки, угол обзора и средства защиты от негативных проявлений окружающей среды.

Обычно камеры размещаются на проходной или в дверях производственного или коммерческого помещения. Оптимальное место — на уровне лица посетителя или под небольшим углом. Так можно обеспечить лучший угол обзора и качество распознавания.

Распространенные программы для систем распознавания

Разработкой систем распознавания лиц занимаются многие компании — эта сфера стала востребованной не только в связи с возможностью предотвращения коммерческих убытков, злоупотреблений персонала и банальных краж, но и в свете участившихся преступлений в общественных местах. С помощью программ распознавания можно вычислить потенциального преступника еще на подходе к зданию с большим количеством людей.

Компания Синезис, Face Director

В линейке этой компании множество разных систем видеонаблюдения и программ бизнес-аналитики на их основе. Эта программа “ловит” и идентифицирует лицо, изображение которого совпало с эталоном в ее базе данных, и сопровождает его на протяжении всего пути объекта. Ее преимущества обусловили широкую распространенность программы:

  • подача тревожного сигнала, если объект пытается прикрыть лицо,
  • высокое качество идентификации — до 99%,
  • широкий выбор углов обзора позволяет сканировать и идентифицировать лицо с любой точки.

Компания House Control, Face Интеллект

Специализируется на промышленных системах безопасности и идентификации лиц. Использует популярный алгоритм с открытым кодом, написанный еще несколько лет назад. Программа универсальна и адаптируется к большинству моделей аналоговых и цифровых видеокамер.

Для качественного распознавания потребуется статичность объекта хотя бы на несколько секунд, поэтому важно правильно установить видеокамеру. Оптимальное место — позади турникета. Здесь программа показывает наиболее качественное распознавание.

Компания VOCORD, VOCORD FaceControl

Компания работает уже 20 лет, специализируясь на программах и системах безопасности с нестандартными параметрами. Эта программа — уникальна, так как является собственной разработкой фирмы. От других программ со схожими задачами она отличается широкими возможностями, которые предлагает оператору:

  • камера выхватывает лица, имеющиеся в базе, из пешеходного потока высокой плотности,
  • идентифицирует пол и возраст объекта,
  • выводит оператору предупреждения на экран, причем делит их на разные категории в зависимости от типа объекта, которого ему присвоила система,
  • процесс распознавания идет в режиме реального времени,
  • предлагает оператору составить аналитический отчет по проделанной работе,
  • осуществляет поиск по базе лиц и в архиве.

Нужна помощь специалиста?

Свяжитесь с нами! Эксперты TERATEK всегда готовы ответить на интересующие
вас вопросы и предоставить развернутую консультацию!

  • Системы видеонаблюдения
  • Камеры видеонаблюдения
  • Комплекты видеонаблюдения
  • Объективы
  • Видеорегистраторы
  • Мониторы
  • Пульты управления
  • Софт для видеонаблюдения
  • Устройства для передачи и обработки аудио/видео
  • Аксессуары для видеонаблюдения
  • Сетевое оборудование
  • Накопители
  • Цифровые системы записи на базе ПК
  • Аксессуары для сетевого оборудования
  • Системы контроля доступа
  • Принтеры для карт и расходники
  • Досмотровое оборудование
  • Парковочные системы
  • Считыватели
  • Домофонная система
  • Шлагбаумы и автоматика для ворот
  • Контроллеры для СКУД
  • Турникеты
  • Карточки и другие идентификаторы
  • Исполнительные устройства
  • Аксессуары для контроля доступа
  • Софт для СКУД
  • Комплекты ОПС и оповещения
  • Умные реле и пульты
  • Извещатели
  • Оповещатели
  • Приемно-контрольные приборы
  • Другие устройства для ОПС и оповещения
  • Программное обеспечение для ОПС
  • Аксессуары для ОПС и оповещения
  • Кабель, СКС, ИБП, и комплектующие
  • Альтернативные источники энергий
  • Блоки питания и аксессуары
  • Кабели
  • Шкафы и комплектующие
  • Инструменты
  • Монтажные изделия
  • Контрольно-измерительные устройства
  • Индивидуальные средства защиты
  • Системы регенерации
  • Средства связи
  • Другие гаджеты
  • Специализированные камеры
  • Информационная безопасность

Источник: securtv.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru