Как проверить простое число программа

Алгоритм поиска простых чисел

Простое число – это число, которое делится нацело без остатка только на 1 и на самого себя. Также известно, что любое целое число, большее 1, является либо простым, либо может быть выражено как произведение простых чисел. Ряд простых чисел начинается с 2 и имеет следующий вид: 2, 3, 5, 7 и т.д.

Рассмотрим алгоритм поиска простых чисел, известный как «метод перебора делителей». Для этого давайте реализуем на Java метод getFirstPrimes(), который будет возвращать N первых простых чисел.

Все найденные простые числа будем складывать в список. Далее проверяем, что если у нас запросили хотя бы одно простое число, то сразу добавим 2, т.к. с него начинается последовательность. Далее в цикле начинаем проверять числа, сразу начиная с трёх. Также обратите внимание, что мы проверяем только нечётные числа (приращение +2), т.к. все чётные числа по определению делятся на 2.

Цикл выполняется до тех пор, пока в нашем результирующем списке не окажется ровно столько простых чисел, сколько у нас запросили. Саму проверку на «простоту» выполняем с помощью метода isPrime(), которому передаём текущее проверяемое число и уже накопленные нами на предыдущих итерациях числа.

Задачи JS: Как найти простое число + Как найти все простые числа до N | Перебор и Решето Эратосфена

Здесь мы сначала вызываем метод Math.sqrt(), ведь если проверяемое число состоит хотя бы из двух множителей, то ни одно из них не может превышать двоичный корень.

Затем в цикле проходим по всем уже найденным простым числам и по очереди пытаемся делить на них текущее число. Если число делится на простое число без остатка – значит, оно составное. Проверку выполняем до тех пор, пока простые числа меньше корня из проверяемого числа.

Можно выполнить небольшую оптимизацию, отказавшись от вычисления квадратного корня и операций над типом double. Вместо этого будем возводить каждое уже найденное простое число в квадрат и проверять, не превысило ли это произведение потенциально простое число. Если превысило, значит, перед нами новое простое число:

Рассмотренный алгоритм работает довольно быстро. За пару секунд он находит 500 000 простых чисел.

Читайте также:
Топ программ для ВК на Андроид

Оптимизации, которые мы применили:

  • проверяем только нечётные числа
  • пытаемся делить только на уже найденные простые числа
  • делителями могут быть только те простые числа, которые не превосходят квадратного корня из проверяемого числа
  • вместо вычисления квадратного корня возводим в квадрат каждое уже найденное простое число, пока произведение не превысит проверяемое число

Как проверить число на простоту?

Как быстро проверить, является ли данное натуральное число n простым? Такая задача часто возникает на практике. Один из примеров — шифр RSA 1 . Это асимметричный шифр: шифрование производится закрытым ключом (известен только отправителю), а расшифровка — открытым (известен всем). Чтобы сгенерировать такую пару ключей для шифра RSA, нужно выбрать два больших числа p и q, причем оба числа должны быть простыми — иначе шифр невозможно будет расшифровать.

Проверка простоты числа перебором делителей. Решение задачи на Python

Проще всего действовать по определению, перебирая все числа от 1 до n и проверяя, не является ли какое-то из них делителем. Этот способ можно немного усовершенствовать: если n = ab, то меньший из двух делителей a и b окажется меньше или равен (sqrt). Значит, достаточно перебирать числа не до n, а всего лишь до (sqrt).

Время работы такого алгоритма, однако, будет огромным. Например, если в двоичной записи числа n тысяча разрядов (это минимальная длина криптографического ключа RSA, гарантирующая безопасность), то число проверок равно (sqrt) ≈ 2 500 ≈ 3 ⋅ 2 150 . Если даже одна проверка делается за 1/10 9 секунды (частота 1 гигагерц), то для выяснения простоты числа n понадобится 3 ⋅ 10 141 c ≈ 10 134 лет! Можно попытаться «подобраться» к числу n с помощью решета Эратосфена, однако серьезного уменьшения времени работы это не даст. Нужны более глубокие идеи.

Начнем с малой теоремы Ферма (МТФ): если n — простое число, то для любого a от 1 до n − 1 число a n − 1 при делении на n дает остаток 1 (т. е. a n − 1 ≡ 1(mod n)). Значит, если мы вдруг нашли такое a, что остаток оказался другим, то n заведомо не простое! Разумеется, перебирать все a в попытке найти нужное — затея не лучше, чем перебирать возможные делители. Но мы попробуем угадать a, выбирая его случайным образом.

Читайте также:
Срок полезного использования программы эвм

Эта идея не такая безнадежная, как может показаться на первый взгляд. Действительно, пусть оказалось, что a0 n − 1 (not≡) 1(mod n), а a1 n − 1 ≡ 1(mod n) (т. е. если мы выбрали a0 , то мы угадали, а если выбрали a1, то нет). Тогда (a0 ⋅ a1) n − 1 ≡ a0 n − 1 ⋅ a1 n − 1 ≡ a0 n − 1 (not≡) 1(mod n) . Таким образом, если мы угадали с выбором a0, то также удачным будет выбор a0 ⋅ a1. Более того, если a0 взаимно просто с n, то для разных значений a1 числа a1 ⋅ a2 будут различны по модулю n. Таким образом, среди всех чисел от 1 до n − 1, взаимно простых с n, окажется не менее половины «удачных»: действительно, каждому «неудачному» числу a1 соответствует как минимум одно уникальное «удачное», равное остатку от деления a0 ⋅ a1 на n (где a0 — одно фиксированное «удачное» число).

Итак, алгоритм — его называют тестом Ферма — действует так. Выбираем случайное a в диапазоне от 2 до n − 1 (число 1 выбирать бессмысленно). Если a не взаимно просто с n — это можно быстро проверить с помощью алгоритма Евклида 2 , то n заведомо составное. Иначе вычисляем остаток от деления a n − 1 на n, и если он не равен 1, то n — составное.

Если же равен, то вероятность того, что мы выбрали «неудачное» a, а для другого a получился бы неединичный остаток, не превосходит 1/2. Возвести a в большую степень можно методом последовательного деления показателя пополам («быстрое возведение в степень»); при этом после каждого шага лучше брать остаток по модулю n, чтобы избежать слишком больших чисел. Повторяя алгоритм k раз, каждый раз выбирая случайное a независимо, мы уменьшим эту вероятность до 1/2 k , что очень быстро стремится к нулю с ростом k.

Подведем итог. Если тест Ферма отвечает, что n составное, то он совершенно точно прав; если говорит, что простое — то может ошибиться, но с очень малой вероятностью. Эту вероятность мы контролируем за счет изменения параметра k — например, можем сделать ее меньше, чем вероятность сбоя техники. Тогда на практике алгоритм будет неотличим от точного — а работает он намного быстрее, чем перебор делителей!

Читайте также:
Как разрабатывают программу мотивации персонала в организации

К сожалению, у теста Ферма есть фатальный недостаток. Существуют так называемые числа Кармайкла: эти вредные числа не являются простыми, но удовлетворяют МТФ для любого a, взаимно простого с n. В таком случае мы не сможем найти ни одного «удачного» a0, и приведенное выше рассуждение недействительно. (Вероятность же случайно наткнуться на число a, не взаимно простое с n, мала.) Самые маленькие числа Кармайкла: 561, 1105, 1729. Числа Кармайкла относительно редки, однако, к сожалению, их бесконечно много 3 . (Иначе можно было бы «починить» тест Ферма, добавив в начале сверку с конечным списком чисел Кармайкла.)

Итак, получается алгоритм: выбираем случайное a от 2 до n − 1, взаимно простое с n (если нашлось не взаимно простое — немедленно отвечаем, что n составное); вычисляем остаток от деления (a^>) на n и сравниваем его по модулю n с (left ( frac right )) . Если ответ «не равно», то a составное, иначе — предположительно простое. Во втором случае вероятность ошибки равна 1/2, теперь уже для любого n. Повторяя алгоритм k раз, снижаем вероятность ошибки до 1/2k .

Существуют и другие вероятностные тесты на простоту. А можно ли построить алгоритм проверки на простоту, который работает быстро и при этом выдает ответ точно, а не с некоторой (пусть и сколь угодно близкой к 1) вероятностью? Такие тесты называются детерминированными. Таков тест Миллера (1976).

Этот тест быстрый и детерминированный, однако доказательство того, что он работает правильно, опирается на недоказанное утверждение — расширенную гипотезу Римана. Быстрый детерминированный тест, корректность которого доказана полностью, был предложен сравнительно недавно — это тест Агравала — Каяла — Саксены или AKS-тест (2002). Однако вероятностные тесты все еще работают быстрее, чем AKS-тест.

1 Подробнее о шифре RSA читайте в статье В.А. Успенского «Как теория чисел помогает в шифровальном деле» (Соросовский образовательный журнал, 1996, №6).

2 Вагутен В. Алгоритм Евклида и основная теорема арифметики («Квант», 1972, №6); Абрамов С. Самый знаменитый алгоритм («Квант», 1985, №11).

3 Alford W.R., Granville A., Pomerance C. There are infinitely many Carmichael numbers. Annals of Mathematics, 1994, vol. 139, p. 703–722.

Источник: elementy.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru