Как посмотреть потребление энергии компьютера программа

Содержание

Мне неоднократно задавали вопрос – какую же мощность потребляет компьютер? Такой вопрос обычно бывает интересен с двух точек зрения: во-первых, для выбора подходящего блока питания, чтобы с одной стороны не переплатить за избыточную мощность, но, с другой стороны, и не оказаться с едва работающим на слабеньком БП компьютере; во-вторых, не так уж редко этот вопрос задают с целью расчета влияния круглосуточно работающего компьютера на семейный бюджет.

В этой статье приведены результаты измерений энергопотребления нескольких достаточно типовых конфигураций компьютеров, а заодно исследованы и свойства блоков питания, связанные с потреблением ими мощности от питающей сети.

Теоретическое введение

В цепях переменного тока принято различать четыре вида мощности. Во-первых, это мгновенная мощность (instantaneous power) – произведение тока на напряжение в данный момент времени. Во-вторых, это так называемая активная мощность (active power, average power) – мощность, выделяющаяся на чисто резистивной нагрузке, измеряется она в ваттах — Вт. Активная мощность целиком идет на полезную работу (нагрев, механическое движение), и обычно именно ее понимают под потребляемой мощностью. Вычисляется активная мощность через интеграл по одному периоду от мощности мгновенной:

А если нет ваттметра? Подсчитываем потребление электричества без приборов!

Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная (reactive power), измеряемая в вольт-амперах реактивных – ВАР. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, лишь зря нагружая питающие провода. Таким образом, реактивная мощность совершенно бесполезна, и с ней по возможности борются, применяя различные корректирующие устройства.

Векторная сумма активной и реактивной мощностей дает полную мощность (apparent power) – соответственно, квадрат полной мощности равен сумме квадратов активной Pact и реактивной Q мощностей:

На практике, однако, полная мощность вычисляется не через реактивную и активную, а как произведение среднеквадратичных значений (Root Mean Squared — RMS) тока и напряжения:

В свою очередь, среднеквадратичные значения вычисляются как квадратный корень из интеграла по одному периоду от квадрата величины:

Всем привычное напряжение 220В в осветительной сети – это как раз среднеквадратичное значение. Здесь, однако, стоит отметить, что большинство измерительных приборов показывает среднеквадратичные значения только, если форма напряжения или тока – синусоидальная. Иначе говоря, скажем, стрелочный вольтметр просто проградуирован так, что на синусоидальном напряжении показываемое им нечто равно среднеквадратичному значению; если же напряжение отличается от синусоидального – то вольтметр будет показывать именно нечто. А так как в импульсных блоках питания, не оборудованных схемами коррекции фактора мощности (Power Factor Correction – PFC), потребляемый ток очень далек от синусоидального, то для измерения среднеквадратичного тока необходимо пользоваться так называемыми TrueRMS приборами, честно интегрирующими измеряемую величину – в противном случае ошибка измерений будет весьма велика. Например, у нас для контроля напряжения и тока использовался мультиметр UT-70D от Uni-Trend :

Читайте также:
Установить программу с помощью powershell

Поймал майнер (nvvkdv.exe) — видеокарта на 90% в простое — fps в играх ушёл на дно!

Однако полной мощности для полноты картины мало, нужна еще активная мощность. Для ее измерения мы воспользовались цифровым осциллографом ETC M-221, который, будучи подключенным к шунту, через который запитывался исследуемый блок питания, снимал осциллограммы напряжения и тока. Таким образом, мы получаем функции U(t) и I(t). Точнее, не сами функции, а таблицу их значений – поэтому от интегрирования переходим к суммированию:

Здесь N – количество отсчетов, приходящееся на один период сетевого напряжения. Для облегчения расчетов была написана несложная программа, читающая с диска сохраненные осциллографом файлы данных (сохраняет он их в своем собственном формате, поэтому обрабатывать данные, скажем, в Excel, представлялось заведомо невозможным) и рассчитывающая все могущие заинтересовать нас значения – полную и активную мощности, среднеквадратичные ток и напряжение, КПД блока (для этого, разумеется, должна быть известна нагрузка на блок) и фактор мощности – отношение активной мощности к полной.

Блоки питания

Первая часть эксперимента по измерению мощности, потребляемой компьютерами – исследование работы блоков питания с искусственной нагрузкой. В качестве нагрузки использовалась та же самая установка, что и при тестировании блоков питания – это позволило нагружать исследуемый блок на любую допустимую мощность, от нуля до максимально возможной для данного блока.

В эксперименте участвовали три различных блока питания – 250Вт FSP250-60GTA от Fortron/Source Technology Inc. (FSP Group) , 300Вт DPS-300TB-1 от Delta Electronics Group и 460Вт HP2-6460P от Emacs / Zippy Technology Corp. . Если первые два блока читателям, несомненно, уже знакомы, то про последний вкратце расскажу – этот блок поставляется в составе серверных корпусов Chenbro Group и представляет из себя мощный блок питания весьма высокого качества, предназначенный для серверов начального уровня. От первых двух блоков его отличает не только максимальная мощность, но и наличие активного PFC.

В ходе эксперимента к блокам подключалась нагрузка мощностью от 25Вт до 250, 300 или 400Вт (в зависимости от блока питания), и снимались осциллограммы напряжения сети и тока, потребляемого БП. Далее на основании осциллограмм рассчитывались полная и активная мощности, КПД блока питания и фактор мощности.

Видно, что КПД всех трех блоков на минимальной мощности составляет около 60%, однако быстро растет с увеличением нагрузки (особенно у блока HP2-6460P) и уже при нагрузке 50-60Вт достигает положенных по ATX/ATX12V Power Supply Design Guide 68% (раздел 3.2.5.1 документа). У первых двух блоков – FSP250-60GTA и DPS-300TB-1 — КПД примерно одинаков и в максимуме равен примерно 80%, в то время как у HP2-6460P он заметно выше и на мощности в 200Вт достигает рекордных 94%.

Определение КПД не было самоцелью – в дальйшем, при измерении мощности, потребляемой реальными компьютерами, знание КПД потребуется для пересчета мощности, потребляемой от сети, к мощности, потребляемой собственно начинкой компьютера.

Коэффициентом мощности называнется отношение активной мощности к полной. Так как разница между этими двумя мощностями появляется за счет реактивной мощности, не несущей никакой пользы, то в идеале активная мощность должна быть равна полной и, соответственно, коэффициент мощности должен быть равен единице. Практическую пользу от этого в первую очередь ощутят владельцы UPS, максимальная выходная мощность которых измеряется как раз в вольт-амперах, а не ваттах – полная мощность, потребляемая одной и той же системой, может уменьшиться на четверть лишь благодаря применению схем коррекции коэффициента мощности.

На графике выше видно, что у блоков, не оборудованных какими-либо цепями коррекции, коэффициент мощности находится в пределах 0,65-0,7, слабо завися от нагрузки; пассивный PFC, примененный в блоке DPS-300TB-1, помогает довольно слабо – коэффициент мощности увеличивается до 0,7-0,75, но не более того. Для блока питания с активным PFC – HP2-6460P – все выглядит иначе: если на маленьких мощностях коэффициент мощности для него равен 0,75, то уже на мощности в 200Вт он доходит до 0,97, а на мощности 400Вт – до 0,99.

На осциллограммах это выглядит так: блок питания без коррекции потребляет ток короткими и высокими импульсами, примерно совпадающими с пиком синусоиды сетевого напряжения (зеленая линия – напряжение, желтая – ток):

Эта осциллограмма снята на мощности 200Вт на блоке от Fortron/Source; при уменьшении нагрузки пики тока становятся уже и ниже. Для блока от Delta Electronics картина выглядит немного иначе, но в принципе ничего не меняется – все те же выбросы тока на максимуме напряжения, лишь немного сглаженные дросселем пассивного PFC, и нулевой ток при напряжении, меньшем двух третей от максимума:

Объясняется такая картина особенностями схемотехники импульсных БП: на входе такого блока питания стоит выпрямитель и следом за ним – конденсатор (или, если быть точным, обычно два конденсатора), с которого уже снимается напряжение питания для инвертора импульсного DC-DC преобразователя. При включении блока питания в сеть первой четвертьволной сетевого напряжения конденсатор заряжается до трехсот с небольшим вольт. Потом сетевое напряжение начинает быстро спадать (вторая четвертьволна), в то время как конденсатор значительно медленнее разряжается в нагрузку – в результате в момент начала роста сетевого напряжения (третья четвертьволна) напряжение на не успевшем разрядиться конденсаторе будет порядка 250В, и пока напряжение в сети меньше – ток заряда будет равен нулю (диоды выпрямителя заперты приложенным к ним обратным напряжением, равным разности напряжений на конденсаторе и в сети). На последней трети четвертьволны (разумеется, все численные оценки я даю весьма приблизительно – в реальности они зависят от величины нагрузки и емкости конденсатора) напряжение в сети превысит напряжение на конденсаторе – и потечет ток заряда. Заряд прекратится, как только напряжение в сети снова станет меньше, чем на конденсаторе – это произойдет в первой половине четвертой четвертьволны.

Для блока с активным PFC – картина меняется полностью. Здесь уже ток пропорционален напряжению, как в обычной резистивной нагрузке:

В результате отбираемая от сети мощность равномерно распределяется по полупериоду сетевого напряжения, и амплитуда тока значительно меньше, чем у блоков питания без коррекции фактора мощности либо с пассивной коррекцией.

Итак, с блоками питания все ясно, теперь можно переходить от лабораторной нагрузки к реальным компьютерам.

Компьютеры

  1. Можно сказать, офисный компьютер – небыстрый по нынешним временам процессор, сравнительно простая видеокарта, ничего лишнего.

    Процессор Pentium III 800EB
    Материнская плата на чипсете Intel i815EPT
    256Мбайт SDRAM
    Винчестер Quantum Fireball AS 30Гбайт
    Видеокарта GeForce2 MX400, 64Мбайта
    Сетевая карта 3Com 3C905C-TX
    CD-ROM LG CRD-8521B

  2. Домашний компьютер среднего уровня – хороший, но сравнительно недорогой процессор и видеокарта, способная справиться с большинством современных игр.

    Процессор AMD Athlon XP 2100+
    Материнская плата на чипсете VIA KT400
    256Мбайт DDR SDRAM
    Винчестер IBM ICL35 80Гбайт
    Видеокарта ATI RadeOn 8500
    Звуковая карта Creative Audigy
    CD-RW Teac CD-W540E
    DVD-ROM ASUS E616

  3. Мощная рабочая станция – два процессора, RAID, много памяти.

    Два процессора AMD Athlon 1200 на ядре Thunderbird
    512Мбайт DDR SDRAM
    Четыре винчестера Maxtor D740X по 20Гбайт в RAID-массиве
    Видеокарта Matrox Millennium

  4. Компьютер верхнего уровня – самый быстрый процессор, самая быстрая видеокарта.

    Процессор Intel Pentium 4 3.06ГГц
    Материнская плата на чипсете Intel i850E
    Два модуля по 512Мбайт RDRAM
    Два винчестера Western Digital WD400JB в RAID1-массиве
    Видеокарта NVIDIA Quadro4 900XGL
    DVD-RW Pioneer DVR-104

Отношение мощностей для каждого отдельного компьютера, в принципе, вполне предсказуемо – так, на системах с Athlon XP 2100+ и Pentium 4 3.06ГГц в 3D тестах свою лепту внесла мощная видеокарта. Сравнительно большое потребление систем на процессорах AMD при простое обусловлено тем, что для перехода в режим энергосбережения этим процессорам требуется отключение системной шины (bus disconnect), которое на подавляющем большинстве материнских плат не реализовано. Рабочая станция на двух Athlon’ах показала благодаря четырем винчестерам неплохой прирост потребляемой мощности при дефрагментации, а вот на 3D тестах мощность увеличилась всего на 17Вт – во-первых, в видеокарте Matrox Millennium отсутствует какой-либо 3D ускоритель, поэтому ее потребление меняется незначительно, во-вторых, так как без отключения системной шины процессоры не переходят в режим пониженного энергопотребления, то и заметный рост нагрузки весьма слабо влияет на потребляемую мощность.

Довольно интересны абсолютные значения мощности. Максимальная зафиксированная потребляемая мощность – 154Вт для мощнейшего компьютера на P4 3.06ГГц, с гигабайтом памяти и видеокартой Quadro4 900XGL. И даже если к этой мощности прибавить, скажем, DVD-привод и активное использование винчестеров (хотя лично я с трудом представляю ситуацию, когда на полную мощность задействованы все компоненты компьютера одновременно) – суммарная потребляемая мощность явно не превысит 200Вт. Однако это средняя потребляемая мощность, а существует еще и мгновенная, которую с помощью применяемой методики измерить невозможно – она обусловлена всплесками потребления, например, при перемещении головок винчестера (потребляемый при этом ток составляет примерно 1-2А по линии +12В). Но даже с учетом таких всплесков (которые, кстати, отчасти гасятся выходными конденсаторами блока питания) мгновенная мощность не превысит 250Вт.

Тем не менее, сплошь и рядом встречаются случаи, когда мощные компьютеры либо вообще отказываются работать на блоках питания мощностью 250-300Вт, либо работают нестабильно (наиболее частый признак нехватки мощности БП – перезагрузки или зависания при запуске 3D-тестов, игр и тому подобных программ). Дело здесь в том, что для многих производителей блоков питания понятие мощности становится все более условным – если мы уже давно перестали удивляться так называемой пиковой мощности (PMPO – Peak Maximum Power Output) дешевых компьютерных колонок, доходящей до совершенно нереальных значений в сотни ватт, то скоро, похоже, придется привыкать к таким же обозначениям мощностей на дешевых блоках питания. Я даже не говорю о реальных выдаваемых блоками питания токах – но и написанная на этикетке мощность зачастую не согласуется с написанными тут же токами нагрузки.

Для примера давайте сравним два блока, которые были рассмотренны в пятой серии тестирования ATX блоков питания – Fortron/Source FSP300-60BTV и PowerMini PM-300W. Оба блока заявлены как 300Вт, однако первый относится к средней ценовой категории, а второй – к нижней. Если же посмотреть на этикетки, обнаруживается, что FSP300 способен выдать по шине +12В ток до 15А, а PM-300 – лишь до 12А.

К чему это приводит? В современных компьютерах очень многое питается от шины +12В – тут и DC-DC конвертер для питания процессора (в системах на Pentium 4; в системах на процессорах от AMD обычно используется +5В), и видеокарта со своим набортным стабилизатором, и соленоидный привод головок винчестера, и двигатель DVD-ROM’а. Очевидно, что легко может возникнуть ситуация, когда мгновенное потребление по этой шине перекроет возможности блока PM-300W, но при этом будет в допустимых пределах для FSP300-60BTV и даже для многих 250Вт блоков, способных неограниченное время отдавать по этой шине до 13А, а в пике – до 16А (например, блоки от той же компании Fortron/Source). Если к этому добавить маленькую емкость конденсаторов на выходе PM-300W (а конденсаторы способны заметно сгладить скачки потребления небольшой продолжительности), отсутствие какого-либо запаса по мощности. Результат очевиден – при первом же скачке тока в дешевом блоке либо сработает защита (а во многих таких БП она настроена даже не на заявленную мощность, а на мощность на 20-30Вт меньше), либо напряжение просядет – на небольшое время, но на такую величину, что компьютер зависнет или перезагрузится.

Более того, в продаже недавно появились корпуса и блоки питания от компании Microlab с маркировкой “M-ATX-350W”. Само собой, покупатель думает, что эти блоки рассчитаны на мощность 350Вт, однако. Этикетка умалчивает о мощности (слов “Output power” на ней просто нет), но сообщает, что максимальный ток по шине +12В – 10А, а по шине +5В – 20А. Если открыть ATX/ATX12V Power Supply Design Guide и посмотреть на таблицы с рекомендуемой нагрузочной способностью для блоков питания различных мощностей (раздел 3.2.3.2), то оказывается, что такие выходные токи можно считать нормальными лишь для 200Вт ATX12V блока питания. Впрочем, формально придраться не к чему – как я уже сказал, нигде на блоке выходная мощность не указана, а название модели. “хоть горшком назови, только в печку не ставь”, как гласит народная мудрость.

Однако встречаются и блоки, которые уже прямо нарушают требования Design Guide. Например, Codegen 250X1. Этот блок продается как рассчитанный на процессоры Pentium 4, иначе говоря, соответствующий стандарту ATX12V. Разумеется, присутствует и 4-контактный ATX12V разъем. При этом максимально допустимый ток по шине +12В составляет 9А, в то время как в Design Guide прямо написано, что на блоках с током менее 10А этого разъема быть не должно (раздел 3.2.3.2), и, соответственно, такой блок не может соответствовать стандарту ATX12V (раздел 1.2.1).

Заключение

Из проведенных исследований можно сделать несколько небезынтересных выводов.

Во-первых, далеко не каждому современному компьютеру требуется блок питания мощностью более 300Вт, а зачастую достаточно и 250Вт. Среднее потребление даже весьма навороченного компьютера составляет всего лишь около 150Вт, то есть 300Вт блок питания обеспечивает его работу с хорошим запасом. Даже на видеокартах на чипе GeForce FX, потребление которого может доходить до 70Вт (у использовавшегося Quadro4 900XGL – около 20Вт), средняя мощность, потребляемая от блока питания, не превысит 200Вт.

Во-вторых, реально проблемы с нехваткой мощности блока питания 300Вт как правило не существует – на самом деле очень многие дешевые блоки просто не способны выдать указанную на них мощность, поэтому проблему стоило бы скорее формулировать как “нехватка мощности 150Вт, больше которой не способны выдать некоторые БП, несмотря на указанные на этикетке 300Вт”. При покупке же блока питания я бы посоветовал обращать внимание не только на общую мощность, но и на отдельные токи по разным шинам – как видите, блоки с одинаковой заявленной мощностью могут существенно различаться по заявленным токам, не говоря уж о токах реальных. Помимо этого хорошим критерием является масса блока – чем он тяжелее, тем как правило и лучше.

В-третьих, далеко не все схемы коррекции фактора мощности дают заметный эффект. Весьма широко применяющаяся в блоках средней ценовой категории пассивная коррекция улучшает фактор мощности лишь на 0,05-0,1 и делает его менее зависимым от нагрузки, в то время как схемы активной коррекции способны довести фактор мощности до 0,95-0,99. Соответственно, при покупке блока питания стоит обращать внимание не только на сам факт наличия PFC, но также на его реализацию – блоки с пассивным PFC легко отличить по стоящему в них дополнительному дросселю внушительных размеров, который обычно закреплен на верхней крышке БП.

Источник: fcenter.ru

Как посмотреть сколько потребляет компьютер электроэнергии

No Image

Выбирая «системник», мы обычно смотрим лишь на его производительность и объем памяти. А о том, сколько света мотает компьютер, задумываемся только немного спустя.

Надо отдать должное, производители всеми силами стараются уменьшить потребление электроэнергии компьютером, и получается это у них довольно неплохо. Если сравнить «динозавров» десятилетней давности с современными «машинами», то разница будет впечатляющей. Отсюда первый вывод: чем новее комп, тем меньше он тянет денег из вашего кармана.

Сколько электричества потребляет компьютер

Понятно, что конфигурации у всех разные, поэтому мы рассмотрим в качестве примера три самых типичных случая.

Компьютер средней мощности с умеренным использованием. Предположим, он работает, в среднем, 5 часов в день, преимущественно для Интернет-серфинга, общения и простеньких игр. Примерное потребление – 180 Ватт, плюс монитор, еще 40 Ватт. Получается, вся система потребляет 220 Ватт в час. 220 Ватт х 5 часов = 1,1 кВт.

Добавим к этому расход в режиме ожидания (ведь вы же не выключаете комп из розетки, правда?). 4 Ватта х 19 часов = 0,076 кВт. Итого, 1,176 кВт в день, 35 кВт в месяц.

Геймерский комп. Конфигурация с производительным процессором и хорошей видеокартой тянет примерно 400 Вт. Плюс монитор, 40 Вт. Итого, среднее потребление электроэнергии компьютером в час – 440 Ватт. Предположим, наш геймер играет 6 часов в день. 440 Вт х 6 часов = 2,64 кВт в сутки. Режим ожидания добавит еще 0,072 кВт (4 Вт х 18).

Итого, 2,71 кВт в сутки, 81 кВт в месяц.

Режим сервера, 24х7. ПК является медиа-сервером в домашней сети, на нем хранятся фото- и видеофайлы. Монитор, в большинстве случаев, не используется, из «начинки» – жесткий диск на несколько терабайт. Такая система потребляет, в среднем, 40 Вт в час. 40 Вт х 24 часа = 0,96 кВт в сутки, 29 кВт в месяц.

Как узнать сколько электроэнергии потребляет компьютер

Покупая лампочку на 100 Ватт, мы заранее знаем, сколько она берет в час. С компьютером, как видно из примеров выше, все несколько сложнее. Потребление зависит от конфигурации вашей системы, графика, и даже того, чем вы занимаетесь.

Даже по ПК «из коробки», не всегда можно понять его мощность. Что уж говорить о собранных под заказ, где на корпусе вообще нет опознавательных знаков. Вы же не станете разбирать его и искать данные дисков, видеокарты… Как, в таком случае, узнать, сколько электроэнергии потребляет компьютер в час? Есть, как минимум, два способа.

Точный. Существуют специальные устройства для подсчета расхода электроэнергии. Весьма полезный девайс можно купить как в наших магазинах, так и в заграничных, через Интернет. Простой ваттметр обойдется в $15, более «навороченные» модели – от $30. Вставляете в розетку возле интересующего вас прибора, и получаете данные его потребления в режиме «онлайн».

Примерный. Выключаем все электричество в доме, оставляем работать одну 100-ваттную лампочку. Считаем количество оборотов счетчика, скажем, за 30 секунд. Выключаем лампочку, включаем комп, запускаем Дьяблу (или любое «тяжелое» приложение), опять считаем обороты, сравниваем. Если намного больше – можно повторить эксперимент с лампочкой на 200 Ватт.

Потребление электроэнергии компьютером в спящем режиме

Современные компьютеры отличает не только низкое потребление, но и разнообразие режимов. Многие их путают, поэтому давайте уточним.

Спящий режим: отключает жесткие диски, приложения остаются в оперативной памяти, работа возобновляется практически моментально. Потребляет 7-10% от общей мощности системы.

Режим гибернации: полностью отключает компьютер, данные сохраняются в отдельный файл, работа возобновляется медленнее, чем после сна. Потребляет 5-10 Ватт.

Полное выключение или режим ожидания, как его называют иногда, по аналогии с бытовой техникой. Происходит полный выход из системы, все несохраненные данные теряются. Работа начинается с новой загрузки системы. Потребляет 4-5 Ватт.

Как уменьшить потребление электроэнергии компьютером

Как видите, в любом из режимов ПК продолжает, пусть и незначительно, потреблять электроэнергию. Поэтому старайтесь, по возможности, отключать его от сети. И еще несколько советов по экономии при пользовании компьютером.

  • Покупайте энергоэффективные модели;
  • Если для вас не принципиально – отдайте предпочтение ноутбуку, а не настольному ПК;
  • Не накручивайте «на всю» яркость на мониторе;
  • Отведите для работы или игр определенное время, после которого выключайте компьютер. Это значительно экономнее, чем множественные «сеансы» по несколько минут.
  • Настройте план электропитания. Установите оптимальные режимы, в зависимости от вашего графика и продолжительности работы.

Похожие записи

Как выбрать счётчик воды?

Как производится поверка газовых счётчиков

Полезные мелочи с Алиэкспресс

Какие светодиодные лампы выбрать для дома

(27) Комментариев

Самое главное забыли сказать – ккд блока питания.
Блок дороже 50$ при использовании компьютера 10 часов в сутки экономит электроэнергии на 10$ в год.

ккд это сильно. Лох

Длительность работы с компьютером средней мощности – 8 часов, из них 20 минут работают дополнительные устройства. Потребление электроэнергии компьютером в месяц – 93 кВт.

А сколько жрет вентилятор примерно ?

около 1квт в месяц

Покажите мне настоящего геймера, который играет 5-6 часов в день )))) Я комп никогдане выключаю почти, только тогда выключаю, когда не скачиваю с интернета ночью и то перед выходными…

Ти конч задротик, а не геймер, чей затраченный свет пока оплачивает твоя мама

Добрый вечер всем! У меня в коммуналке, с одной комнаты наматывает счётчик на 1400 рублей в месяц, в комнате есть холодильник, плазменный телевизор, одна лампочка экономики, фен каждый день по 5 мин работает, стиральная машина на 5 кг.

плазма много мотает, купите обычный жк

А что, еще есть коммуналки?! Я в шоке.

С такими ценами на электричество, выгоднее на тетрис перейти, а ПК включать только ради MS Office (хотя надо уже гугл доксы осваивать)

Измерил –
Acer Aspire ES1-571, 4GB RAM, 2TB HDD, потребляет 60 – 65 KwH, и во сне 5 – 8 KwH
Десктоп MSI, 3GHz DualCore, 4GB RAM, 1xHDD 500GB, 1xDVD, BP 500W – 85KwH

Если блок питания на 650 Вт, то это не значит, что эти Ватты он всё время жрёт, это ресурс (запас) такой для бесперебойной работы железа. Расчёты некорректны.

… Кирилл, всё правильно – 300 ва это водоизмещение корабля, а не вес груза в его трюме. Чтобы не ломать мозг, измерь переменный ток в проводе до компа, тестером. На всех режимах, чтобы спать спокойно! И вычисли потребляемую мощность онным, умножив амперы на вольты. Пример : ток на тестере 1 Ампер; значит, умножив на 220 в получим мощность 220 ВА.

Если надо – можно проверить и надежное сечение провода, по справочникам электрика СССР.

А проги мониторящие потребление Ватты ПК имеются? Не девайс же покупать?

Электрика вызови на 5 минут с амперметром, раз жалко бобла на девайс. Потом человека, дружащего с физикой/математикой. Вы там в Москве и Биробиджане все такие жадные и глупые?

Где он написал, что он с Москвы? Он обязан шарить в электрике? Ты тупой совсем или это твоя самая неудачная шутка? Ещё остались люмпены, которым Москвичи под дверь каждый вечер срут, что их так ненавидят? Жалко, что природа так жадна к тебе и не подарила чудесный орган – мозг.

Сколько в рублях стоит 1 час работы компьютера?

Тарифы у всех разные, ПК у всех разные, все по разному используют ПК (серфинг интернета и мощная игра жрут электричество по разному), да и кто то за компом сидит 1 час, а кто-то 24. Очень не корректный вопрос.

Сколько стоит 1 час работы компа …ему 10 лет

Тарифы у всех разные, ПК у всех разные, все по разному используют ПК (серфинг интернета и мощная игра жрут электричество по разному), да и кто то за компом сидит 1 час, а кто-то 24. Очень не корректный вопрос.

“Получается, вся система потребляет 220 Ватт в час”. “Итого, 1,176 кВт в день, 35 кВт в месяц”. Автор физику в школе плохо учил. Правильно: потребляет 220 Ватт. Итого 1,176 кВт*ч в день, 35 кВт*ч в месяц.

Примите во внимание ошибку. В спящем режиме как раз-таки НЕ выключаются жествкие диски и ВЫКЛючаются ОЗУ И ПЗУ, перед этим создавая дамп памяти в жестких дисках

О боже или я сам себя запутал. Ля умные здесь? Поясните что я понял не так

дамп создается при гибернации а в спящем отключаются диски и монитор…

ПЗУ и есть жесткий жиск

Сколько жрут утюг, микроволновка, стиралка, холодильник, телик и злая теща?

Потребляемая мощность компьютера. Как узнать мощность компьютера

Потребляемая мощность компьютера будет интересна не только при покупке нового БП или источника бесперебойного питания. Многим пользователям по экономическим соображениям очень интересно, какое количество энергии забирает на себя персональный компьютер во время работы. В данной статье пользователь сможет ознакомиться со всеми способами расчёта мощности компьютера.

потребляемая мощность компьютера

Дедовский способ

Если речь идёт об экономии электричества, то потребляемая мощность компьютера выясняется довольно просто – нужно отключить все бытовые приборы от электрической сети, оставив лишь включённым персональный компьютер. После чего нужно зафиксировать начальные показания электрического счётчика и через один час конечные показания. Разница между полученными данными и будет потребляемой мощностью компьютера.

Однако для проведения данного эксперимента пользователь должен знать, что компьютер в состоянии покоя и при активной нагрузке (например, во время игры) потребляет разное количество энергии. Специалисты рекомендуют в течение одного часа подвергать компьютер рабочей нагрузке – запустить мощную игру или синтетический тест на определение производительности видеокарты. Таким образом, будет зафиксирована максимальная потребляемая мощность, которую в дальнейшем необходимо использовать в финансовых расчётах.

как узнать мощность компьютера

Об эффективности

Мощность блока питания компьютера указывается на всех устройствах, представленных на рынке в виде специальной маркировки. Но ориентироваться на неё покупателям не стоит, так как для компьютерных комплектующих важна активная мощность. Не вдаваясь в физику, пользователь должен знать, что во всех БП существует рассеиваемая мощность – тепловыделение и охлаждение, потери в электрических цепях и тому подобные утечки электричества. Вообще, специалисты рекомендуют отнимать 20% от заявленной мощности производителя блока питания, чтобы получить активную мощность.

Но если речь идёт о таких серьёзных брендах, как Seasonic, Zalman, Thermaltake и подобных устройствах в этой золотой категории, то никаких дополнительных расчётов при покупке производить не нужно. Завод-изготовитель учитывает все потери КПД блока питания и маркирует свой продукт реальными данными. Судя по отзывам многих владельцев элитных блоков питания, зачастую данные производителя ещё и занижены на 5-10%.

расчёт мощности блока питания компьютера

По накатанной дорожке

В средствах массовой информации много рекомендаций для тех, кто не понимает, как узнать мощность компьютера. Специалисты советуют полностью довериться продавцу магазина, в котором совершается покупка персонального компьютера. Ведь в течение дня осуществляется не одна продажа компьютера, и продавец точно знает, какой мощности блок питания необходимо установить. Офисному компьютеру хватит 300 Вт, домашний ПК для мультимедиа должен быть оснащён 400 Вт БП, а вот игровому понадобится 600 и более Ватт, в зависимости от конфигурации. И бренд продавец подберёт самый лучший, ведь он продал таких устройств больше тысячи, и нет ни одного возврата.

А вот с другой стороны, о которой покупатель совсем не догадывается, у продавца на складе «застряли» блоки питания, которые давно сняты с производства и не подходят под официальную гарантию завода-изготовителя, их нужно срочно продать. Реальный расчёт мощности блока питания компьютера, естественно, никто производить не будет.

мощность блока питания компьютера

Простая математика

Почему бы не взять данные со всех комплектующих, которые планируется установить в персональный компьютер? Ведь по стандарту производитель обязан маркировать свою технику, указывая её реальное и максимальное энергопотребление. Расчёт мощности компьютера вполне реально произвести таким способом. Даже вентиляторы системы охлаждения и подсветка корпуса имеют маркировку потребления электричества.

Проблемы в расчётах могут возникнуть у покупателя, если он приобретает недорогую китайскую продукцию, которая очень часто не маркируется. Также на некоторых комплектующих производитель предпочитает не указывать максимальное энергопотребление. В результате подсчёта становится ясно, что ни о каких точных данных не может быть и речи. В любом случае полученный результат нужно округлять в большую сторону.

расчёт мощности компьютера

Официальные данные

Многих владельцев интересует больше вопрос о том, как узнать мощность компьютера без разборки корпуса. Такое вполне реально, да и точность данных будет значительно выше. Для этого необходимо обратиться к данным, которые содержатся на официальном сайте производителя компьютерных комплектующих. Считается хорошим тоном, если производитель указывает полный перечень данных на своё устройство, включая энергопотребление, поэтому найти нужную информацию пользователю не составит особого труда. Такой способ расчёта мощности компьютера всё равно требует временных затрат.

  1. Сначала нужно узнать полную маркировку установленного оборудования. Сделать это можно либо разобрав компьютер, либо с помощью специальных программ, таких как Aida, Astra или Everest.
  2. Нужно найти официальный сайт производителя и разобраться с его работой.
  3. Найти нужную комплектующую и переписать данные энергопотребления.
  4. И только потом удастся эффективно рассчитать мощность компьютера (Вт).

Эффективные калькуляторы

Расчёт мощности блока питания компьютера можно произвести легко и просто с помощью специального калькулятора, который можно найти на официальных сайтах производителей, которые специализируются на соответствующих устройствах. Например, на официальных сайтах Cooler Master и ASUS, на стартовой странице, пользователю предлагается выполнить такой расчёт.

Достоинства калькулятора в том, что он имеет собственные базы по всем доступным на рынке комплектующим. При выходе новых устройств производитель тут же обновляет базу данных, предоставляя покупателю актуальные данные. Простота использования калькулятора налицо: выбрал из списка нужные данные – получил результат. В средствах массовой информации ИТ-специалисты рекомендуют увеличивать полученные после расчёта калькулятором данные на 10-15% про запас. В таких случаях при установке дополнительных комплектующих впоследствии потребляемая мощность компьютера будет в рамках эффективной работы блока питания.

как проверить мощность компьютера

Чего не нужно делать

Многие пользователи интересуются тем, как проверить мощность компьютера с помощью синтетических тестов на производительность блока питания. Ведь в средствах массовой информации много рекомендаций по этому поводу, а также представлены ссылки на ресурсы, откуда можно загрузить программное обеспечение для проведения тестов. Было бы здорово протестировать блок питания, определить максимальную мощность компьютера. Сделав собственные умозаключения, оставить систему в покое или приобрести новое, мощное устройство.

Даже серьёзные производители на рынке блоков питания утверждают, что такое тестирование является авантюрой, ведь программное обеспечение заставляет все комплектующие в компьютере работать на пределе своих возможностей, чего не делает ни одна программа в мире, включая самые производительные игры. Результатом успешного тестирования будет 100%-й показатель мощности компьютера. А вот неудачный результат может привести к выходу из строя одного или нескольких устройств в системе. Нужно ли такое тестирование – решать пользователю.

мощность компьютера Вт

В заключение

Как видно из обзора, потребляемая мощность компьютера вычисляется очень легко и не требует особых знаний физики или математики. Всем владельцам компьютеров, а также потенциальным покупателям рекомендуется производить расчёты самостоятельно. К тому же стоимость блока питания прямо пропорциональна мощности, и переплачивать за какие-то рекомендации, не подтверждённые реальными данными, нет никакого смысла. Не стоит забывать и о том, что слишком мощный блок питания приводит к увеличению электропотребления, забирая энергию на собственные нужды, а это влечёт за собой ежедневные финансовые расходы на оплату электроэнергии.

Источник: www.syl.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru