Как посчитать критерий стьюдента в программе статистика

В ходе рассмотрения примера мы будем использовать вымышленные сведения, чтобы читатель мог провести необходимые преобразования самостоятельно.

Вещество D, ммоль/л

Хотим вас предупредить, что выборки объема 10 рассматриваются нами для простоты представления данных и вычислений, на практике такого объема выборок обычно оказывается недостаточно для формирования статистического заключения.

В качестве примера рассмотрим данные 1-го столбца таблицы.

Описательные статистики

Выборочное среднее

Среднее арифметическое, которое очень часто называют просто «среднее», получают путем сложения всех значений и деления этой суммы на число значений в наборе. Это можно показать с помощью алгебраической формулы. Набор n наблюдений переменной x можно изобразить как x1, x2, х3, . xn

Формула для определения среднего арифметического наблюдений (произносится «икс с чертой»):

= (12 + 13 + 14 + 15 + 14 + 13 + 13 + 10 + 11 + 16) / 10 = 13,1;

Выборочная дисперсия

T-критерий СТЬЮДЕНТА STATISTICA #03 | СТАТИСТИКА STATISTICA

Один из способов измерения рассеяния данных за­ключается в том, чтобы определить степень отклоне­ния каждого наблюдения от средней арифметической. Очевидно, что чем больше отклонение, тем больше изменчивость, вариабельность наблюдений. Однако мы не можем использовать среднее этих отклонений как меру рассеяния, потому что положительные от­клонения компенсируют отрицательные отклонения (их сумма равна нулю). Чтобы решить эту проблему, мы возводим в квадрат каждое отклонение и находим среднее возведенных в квадрат отклонений; эта величина называется вариацией, или дисперсией. Возьмем n наблюдений x1, x2, х3, . xn , средняя которых равняется . В ычисляем диспер сию, обычно обозначаемую как s 2 , этих наблюдений:

Выборочная дисперсия данного показателя равна s 2 = 3,2.

Читайте также:
Программа для обновления операционной системы

Среднеквадратичное отклонение

Стандартное (среднеквадратичное) отклоне­ние — это положительный квадратный корень из дисперсии. На примере n наблюдений это выглядит следующим образом:

t-КРИТЕРИЙ СТЬЮДЕНТА ДЛЯ НЕЗАВИСИМЫХ СОВОКУПНОСТЕЙ

– общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

Уильям Госсет

1. История разработки t-критерия

2. Реализация в statistica

STATISTICA позволяет применять четыре варианта t-критерия:

  • критерий для независимых выборок по группам (t-test, independent by groups),
  • критерий для независимых переменных (t-test, independent by variables),
  • критерий для зависимых выборок (t-test, dependent samples),
  • критерий для одной выборки (t-test, single sample).

2.1. Применение t-критерия для независимых выборок

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru