Как отучить программу от USB ключа

Русские сисадмины. Присоединяйтесь!
USB ключи — как снять дамп и эмулировать?

Господа! Возникла необходимость использовать эмуляторы USB ключей. Сразу хочу оговориться, что сами ключи в наличии, метод их получения совершенно валиден, но по определенным обстоятельствам хотелось бы их не использовать, что бы оптимизировать их замену, без прибегания к физическому «втыканию» и «вытыканию» в USB порт. Для этого необходиом ПО для анализа ключа, и снятия дампа в файл.

Так же необходим универсальный эмулятор который будет эмулировать под виндой USB ключ, с подпихнутым в него соответсвующим дампом. У кого-то есть практическое понимание этого вопроса?

20 comments —
( 20 comments — Leave a comment )
j_sheridan on July 1st, 2008 09:39 am (UTC)

Советую поинтересоваться у производителя ключа либо у распространителя (у производителя продукта, использующего ключ)
Это раз.
Два: что за ключ?

voviabolo on July 1st, 2008 09:50 am (UTC)

раз. производитель не заинтересован в том что бы давать рекомендации относительно того как ключ можно скопировать и избежать его физическое использование.

КЛЮЧ ЗАПУСКА WINDOWS В ВИДЕ USB ФЛЕШКИ. Как сделать


два. Ключи USB, один определяется виндоусом как SmartKey iKey 1000 Rainbow, а другой вообще не известно что, в системе никак не анонсируется, а софтина работающая с ним видит его напрямую.

j_sheridan on July 1st, 2008 10:07 am (UTC)

Помоему производителю какраз должно быть похъ. Он продает решения для увеличения безопасности, а не пластмассово-кремниевые свистки.

voviabolo on July 1st, 2008 10:20 am (UTC)

если производитель сам расскажет как копировать его пластмассов-кремневый свисток, то он рискует завтра обнаружить что его ПО, вовсе не нуждается в таком свистке )

rower on July 1st, 2008 03:26 pm (UTC)

производитель свистка или производитель софтины = заказчик свистка и технологии у производителя свистка ?

Источник: ru-sysadmins.livejournal.com

Взлом шифрованных USB-ключей: аппаратный подход

Взлом шифрованных USB-ключей

А вы когда-нибудь задумывались о том, действительно ли ваш новенький AES-шифрованный USB-ключ шифрует данные? Или же это просто бутафория? В этом докладе представлены результаты аудита, которые показывают, что данные продукты не соответствуют развернутой вокруг них шумихе.

Среди проанализированных девайсов многочисленные USB-ключи и жесткие диски, которые претендуют на то, что они шифруют данные.

Взлом шифрованных USB-ключей

В докладе представлена методология анализа «защищенных» USB-девайсов, которая включает в себя комбинацию аппаратного и программного подхода. В процессе анализа были найдены несколько уязвимостей и разработаны атаки, эксплуатирующие эти уязвимости. Описание сопровождается практическими демонстрациями на живых примерах.

4.6 Программы для администрирования ключей HASP

Вооружившись предоставленными в докладе знаниями и инструментами, каждый может легко и просто проанализировать безопасность любого USB-девайса.

Источник: spy-soft.net

AntiHASP: эмулируем ключ аппаратной защиты HASP

В этой статье описаны способы обхода аппаратных систем защиты. В качестве примера рассмотрена технология HASP (Hardware Against Software Piracy), разработанная компанией Aladdin Knowledge Systems Ltd. В прошлом данная технология являлась одной из самых популярных аппаратных систем защиты ПО.

Мощью аппаратной защиты HASP пользуются многие серьезные разработчики софта, которые не хотят, чтобы их продукт несанкционированно распространялся. Хаспом, например, защищаются пакеты «1С.Бухгалтерия» или «1С.Предприятие», без которых не может прожить ни одно более или менее организованное дело.

Читайте также:
Фотошоп плюсы и минусы программы

Популярный юридический справочник «КонсультантПлюс» также защищает доступ к данным с помощью электронных ключиков. Чтобы воспользоваться вышеупомянутым или другим не менее дорогостоящим софтом, не платя никому ни копейки, недостаточно просто полазить по Сети в поисках txt’шника с ключиками. Однако хакер всегда разберется, что делать с защитой, пусть и аппаратной. И паяльник ему для этого не понадобится.

Взглянем

Утрируя, можно сказать, что HASP состоит из двух частей: аппаратной и программной. Аппаратная часть — это электронный ключик в виде USB-брелка, PCMCIA-карты, LTP-девайса или вообще внутренней PCI-карты. Установленный софт будет работать только на той машине, в которую воткнут электронный ключ. Собственно, неплохо было бы отучить софт от такой неприятной для кошелька привычки.

Программная часть — это драйвера электронного ключа и различный софт, привязывающий электронные ключи с их драйверами непосредственно к защищаемому продукту или к каким-то зашифрованным данным. В статье мы рассмотрим и обойдем защиту, использующую USB-брелок — наверное, наиболее популярный электронный ключ на сегодня.

Механизм системы защиты

Сам брелок нас почти не интересует, в отличие от ПО в его комплекте. Для нас наибольший интерес представляет модуль hardlock.sys. Не углубляясь в подробности, отмечу, что этот драйвер отвечает за взаимодействие с аппаратным ключом. Он имеет два объекта устройства, один из которых обладает символьным именем DeviceFNT0. Используя этот объект, защищенное приложение посредством диспетчера ввода-вывода проверяет лицензию на использование данного ПО.

Главным недостатком такой системы защиты является возможность перехвата вызовов диспетчера ввода-вывода и эмулирования аппаратного ключа. Существует также вариант разработки драйвера виртуального ключа, но это гораздо более сложная техническая задача, нежели перехват вызовов.
Как тебе известно, модель драйвера описывается в структуре DRIVER_OBJECT при загрузке модуля. Она хранит массив обработчиков сообщений. Причем никто не мешает переписать эти адреса и получить управление, выполнив наш код. Таким образом, можно перехватывать и подменять IRP-пакеты, подставляя лицензионные данные. Другими словами, имея дамп ключа защиты, можно передать его программе, проверяющей верность лицензионных данных!

Для эксплуатации другого метода также требуется дамп ключа, но подстановка данных осуществляется иначе, а именно — в программной эмуляции. То есть драйвер защиты сможет обращаться с виртуальным ключом так же, как и с физическим.

Перехват и эмуляция

Как уже отмечалось, идея перехвата состоит в перезаписи обработчиков IRP-пакетов. Для этого необходимо иметь возможность изменять поля структуры DRIVER_OBJECT. К счастью, существует функция IoGetDevicePointer, которая возвращает указатель на объект вершины стека именованных устройств и указатель на соответствующий файловый объект. Вот фрагмент кода функции, устанавливающей ловушку:

NTSTATUS HookDevice(LPWSTR lpDevice)

UNICODE_STRING DeviceName;
PDEVICE_OBJECT DeviceObject;
PFILE_OBJECT FileObject;

Получив указатель на структуру DEVICE_OBJECT, имеем указатель на DRIVER_OBJECT. Теперь заменим адреса обработчиков и функций выгрузки драйвера на свои:

NTSTATUS HookDevice(LPWSTR lpDevice)

gDriverObject = DeviceObject-> DriverObject;

gDeviceControl = gDriverObject-> MajorFunction[IRP_MJ_DEVICE_CONTROL];
gDriverObject-> MajorFunction[IRP_MJ_DEVICE_CONTROL] = HookDispatch;

gInternalDeviceControl = gDriverObject-> MajorFunction[IRP_MJ_INTERNAL_DEVICE_CONTROL];
gDriverObject-> MajorFunction[IRP_MJ_INTERNAL_DEVICE_CONTROL] = HookDispatch;

gDriverUnload = gDriverObject->DriverUnload;
gDriverObject->DriverUnload = HookUnload;

В последней строчке вызывается функция ObfDereferenceObject, которая уменьшает количество ссылок на файловый объект. Это необходимо делать для корректной выгрузки драйвера, чтобы не было утечки ресурсов и аналогичных ошибок.

Так как указатель на объект драйвера защиты сохранeн, то чтобы снять ловушку, нужно просто восстановить прежние обработчики IRP-пакетов:

gDriverObject-> MajorFunction[IRP_MJ_DEVICE_CONTROL] = gDeviceControl;
gDriverObject-> MajorFunction[IRP_MJ_INTERNAL_DEVICE_CONTROL] = gInternalDeviceControl;
gDriverObject->DriverUnload = gDriverUnload;

Читайте также:
Вирусы поражающие исходный код программ

Конечно, надо добавить соответствующие проверки на валидность указателей и прочее.

Теперь необходимо реализовать правильную выгрузку драйверов. Так как система защиты по каким-либо причинам может закончить свою работу раньше нашего драйвера, то чтобы избежать краха системы из-за неверных указателей, обработаем это событие в функции HookUnload:

void HookUnload(PDRIVER_OBJECT DrvObj)

Здесь происходит восстановление полей структуры DRIVER_OBJECT, и передаeтся управление на оригинальный код выгрузки драйвера перехваченного устройства.

Аналогично поступаем, если наш драйвер завершает работу раньше системы защиты. Только нужно высвободить захваченные ресурсы и не вызывать сохранeнный gHookUnload.

Принцип работы эмулятора

Перехватчик

Зная основные принципы простейшего перехвата IRP-пакетов, приступим к реализации пока только самого перехватчика для дальнейшего анализа. Для этого создадим объект драйвера, который содержит символьное имя (например DosDevicesHook) и точки входа CREATE, CLOSE, READ.

DriverObject->MajorFunction[IRP_MJ_CREATE] = DriverDispatch;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = DriverDispatch;
DriverObject->MajorFunction[IRP_MJ_READ] = DriverDispatch;
DriverObject->DriverUnload = DriverUnload;

Это нужно для того, чтобы работать с нашим перехватчиком как с файлом, используя функции CreateFileReadFileCloseHandle. При такой реализации обмена данными между приложением и перехватчиком невозможно сразу же отправить их пользовательской программе, поэтому необходимо создать некоторую структуру для хранения необходимых данных о пойманном пакете.

Например односвязный список, как это реализовано мной. Теперь следует определиться, какую информацию нужно буферизировать. Это общая информация о пакете (тип, флаги, прочее) и, конечно, буферы. Также можно добавить время перехвата. При копировании содержимого буферов нужно помнить об их типе, иначе — крах.

Забегая вперед, отмечу, что драйвер защиты использует буферизированный ввод-вывод, это немного упрощает код.

if (idlTail->IrpData.InputLength)
idlTail->InputBuffer = ExAllocatePool(NonPagedPool, idlTail->IrpData.InputLength);
RtlCopyMemory(idlTail->InputBuffer, Irp->AssociatedIrp.SystemBuffer, idlTail->IrpData.InputLength);
>

if (IoSL->MajorFunction == IRP_MJ_DEVICE_CONTROL)
Status = pHookedDriverDispatch[IRP_MJ_DEVICE_CONTROL]( DeviceObject, Irp);

if (idlTail->IrpData.OutputLength)
idlTail->OutputBuffer = ExAllocatePool(NonPagedPool, idlTail-> IrpData.OutputLength);
RtlCopyMemory(idlTail->OutputBuffer, lpBuffer, idlTail->IrpData.OutputLength);
>

Осталось реализовать чтение из драйвера. Так как пакет содержит буферы, чье содержимое представляет интерес, то размер сообщений заранее не известен. Поэтому поступим следующим образом: при первом чтении получаем общую информацию о пакете и размере буферов; при повторном читаем содержимое, удаляем звено из списка пакетов и не забываем про спиновые блокировки для последовательной работы с данными:

idlTemp = idlHead->ldlNext;
ExFreePool(idlHead);
idlHead = idlTemp;
if (!idlTemp)
idlTail = NULL;
>

Когда перехватчик готов, запускаем сначала его, а затем — защищенное приложение с ключами и без. Из полученных логов становится видно, какие управляющие коды посылаются и их результаты. Также можно видеть, что запросы и ответы на два различных кода (9c402450, 9c4024a0) не изменяются. Казалось бы, можно построить табличный эмулятор, но после серии запусков убеждаемся, что это невозможно, так как содержимое буферов различно, и неизвестно, как оно образуется.

Перехваченные пакеты без ключа

Перехваченные пакеты с ключом

Затем возможны несколько вариантов дальнейших действий:

  • изучать дебри драйвера защиты;
  • воспользоваться информацией самих разработчиков системы.

Оба варианта дают необходимую информацию. Итак, оказывается, содержимое пакетов шифруется публичным симметричным алгоритмом AES (Advanced Encryption Standard). Логичной целью является получение ключа шифрования.

Но если еще больше углубиться в изучение устройства системы защиты, то окажется, что аппаратный ключ имеет уникальный номер и содержит всю необходимую информацию, но для доступа к нему требуются программные ключи.

Пример дампа ключа

Поэтому первое, что нужно сделать, это получить ключ. Поставленную задачу может решить обычный брутфорс:

unsigned short Key;
unsigned char RefKey[8], VerKey[8];

Читайте также:
На играх 4 олимпиады легкоатлеты из какой страны доминировали во всех видах программы

for (Key = 0; Key if (!HL_LOGIN(Key, 1, RefKey, VerKey))
HL_LOGOUT();
Break;
>
>

Далее ключ (MODAD) используется для снятия дампа: тип, идентификатор, порт подключения и так далее. Для этого есть функции, определенные разработчиками.

Функции HL_LOGIN, HL_LOGOUT доступны из HASP SDK для разработчиков приложений, защищенных на этой платформе, и имеют следующие прототипы:

WORD HL_LOGIN(WORD ModAd, Word Access, Byte *RefKey, Byt *VerKey);
WORD HL_LOGOUT(void);

Первая функция служит для открытия сессии работы с ключом защиты посредством драйвера, вторая – завершает сессию. Это прототипы старых версий HASP SDK, но работают они и с новыми типами ключей, так как разработчики обеспечили обратную совместимость.

Новый API мало отличается от старого, и это никак не сказывается на принципе работы брутфорса. Подробную документацию Hasp API, готовые реализации брутфорса и дампера ключей можно найти на диске.

Обработчик

Теперь есть все необходимое для корректной работы модуля. Осталось реализовать подстановку лицензионной информации. Причем можно перехватывать лишь некоторые IRP-пакеты. Здесь все уже зависит от конкретной версии ключа и защищаемой программы.

Дамп ключа лучше не встраивать в драйвер, а загружать динамически из реестра. Лучше основываться на уже готовом перехватчике запросов, так будет проще отладить драйвер, отправляя перехваченные/подставленные пакеты на анализ пользовательскому приложению. Принципиально логика перехватчика будет иметь такой вид:

Пакет запроса к драйверу находится в криптованном виде, поэтому для доступа к его содержимому требуется расшифровать, а затем зашифровать. Возникает вопрос: каким алгоритмом и каким ключом выполнено шифрование? Покопавшись в исходниках от создателей системы, можно получить следующий первичный алгоритм шифрования пакета:

void Encrypt(BYTE * Buffer)
WORD Seed = ((WORD)Buffer + 0x5e);
WORD Ver = ((WORD)Buffer + 0xba);

if (Ver)
for (int i = 0; i < 0xB9; i++) (WORD)(Buffer + i) += Seed;
Seed = (Seed >> 15) | (Seed Seed -= (WORD)(Buffer + i) ^ i;
>

for (int i = 0xBE; i < 0xFF; i++) (WORD)(Buffer + i) -= Seed;
Seed = (Seed >> 15) | (Seed Seed += (WORD)(Buffer + i) ^ i;
>

Видно, что алгоритм гораздо сложнее, чем обычный сдвиг и исключающее «или». А вот алгоритм дешифрования:

void Decrypt(BYTE* Buffer)
WORD Seed = ((WORD)Buffer + 0x5e);
WORD Ver = ((WORD)Buffer + 0xba);

if (Ver) for (int i = 0xFE; i > 0xBD; i—) Seed -= (WORD)(Buffer + i) ^ i;
Seed = (Seed > 1);
(WORD)(Buffer + i) += Seed;
>

for (int i = 0xB8; i >= 0; i—) Seed += (WORD)(Buffer + i) ^ i;
Seed = (Seed > 1);
(WORD)(Buffer + i) -= Seed;
>

Затем следует ещe один этап преобразования данных, более сложный и уже полностью зависящий от структуры запроса. Тут не обойтись без дизассемблера, придется покопаться в бине и позаимствовать немного кода у создателей. Это непросто, так как код драйвера защиты сильно обфусцирован, но он не отличается разнообразием уловок. Достаточно будет декомпилировать драйвер не полностью, а только лишь некоторые кусочки кода.

В заключение отмечу, что построение табличного эмулятора, основанного на перехвате DeviceIoControl, — достаточно трудная задача. Но такой принцип эмулятора можно использовать и на другом уровне взаимодействия: создать виртуальную USB-шину.

Заключение

Это не единственный способ избавиться от системы защиты. Существуют и другие, более совершенные методы. Изложенные в статье принципы можно использовать и для анализа работы драйверов, перехватывая IRP-пакеты. Таким образом можно добавить неплохой инструмент в свой сделанный на коленке набор. Удачи!

Источник: xakep.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru