Запоминающее устройство — носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.
Устройства хранения информации делятся на 2 вида:
- внешние (периферийные) устройства
- внутренние устройства
НГМД (накопитель на гибких магнитных дисках)
Использование гибких дисков уходит в прошлое. Бывают двух типов и обеспечивают хранение информации на дискетах одного из двух форматов: 5,25′ или 3,5′. Дискеты формата 5,25′ в настоящее время практически не встречаются (максимальная емкость 1,2 Мб). Для дискет формата 3,5′ максимальная емкость составляет 2,88 Мб, самый распространенный формат емкости для них – 1,44 Мб.
Гибкие магнитные диски помещаются в пластмассовый корпус. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращается с постоянной угловой скоростью.
Устройства хранения данных
Все дискеты перед употреблением форматируются – на них наносится служебная информация, обе поверхности дискеты разбиваются на концентрические окружности – дорожки, которые в свою очередь делятся на сектора. Одноименные сектора обеих поверхностей образуют кластеры. Магнитные головки примыкают к обеим поверхностям и при вращении диска проходят мимо всех кластеров дорожки.
Перемещение головок по радиусу с помощью шагового двигателя обеспечивает доступ к каждой дорожке. Запись/чтение осуществляется целым числом кластеров, обычно под управлением операционной системы. Однако в особых случаях можно организовать запись/чтение и в обход операционной системы, используя напрямую функции BIOS. В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие воздействия могут привести к размагничиванию носителя и потере информации.
НЖМД (накопитель на жестких магнитных дисках)
Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного ПК. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью.Основные принципы работы жесткого диска мало изменились со дня его создания.Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли. Кроме того, корпус экранирует накопитель от электромагнитных помех. Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже — из керамики или стекла, покрытую тонким ферромагнитным слоем. Магнитные головки считывают и записывают информацию на диски. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и «запомнить». Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Появление в 1999 г. изобретенных фирмой IBM головок с магниторезистивным эффектом (GMR – Giant Magnetic Resistance) привело к повышению плотности записи до 6,4 Гбайт на одну пластину в уже представленных на рынке изделиях. Основные параметры жесткого диска:
- Емкость – винчестер имеет объем от 40 Гб до 200 Гб.
- Скорость чтения данных. Средний сегодняшний показатель – около 8 Мбайт/с.
- Среднее время доступа. Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель – 9 мс.
- Скорость вращения диска. Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов.
- Размер кэш-памяти – быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У винчестера есть своя кэш-память размером до 8 Мбайт.
- Фирма-производитель. Освоить современные технологии могут только крупнейшие производители, потому что организация изготовления сложнейших головок, пластин, контроллеров требует крупных финансовых и интеллектуальных затрат. В настоящее время жесткие диски производят семь компаний: Fujitsu, IBM-Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие особенности.
Стримеры
КАК СЛЕДИТЬ СКРЫТНО ЗА ЧЕЛОВЕКОМ в 2021?!
лассическим способом резервного копирования является применение стримеров – устройств записи на магнитную ленту. Однако возможности этой технологии, как по емкости, так и по скорости, сильно ограничены физическими свойствами носителя. Стример по принципу действия очень похож на кассетный магнитофон. Данные записываются на магнитную ленту, протягиваемую мимо головок.
Недостатком стримера является слишком большое время последовательного доступа к данным при чтении. Емкость стримера достигает нескольких Гбайт, что меньше емкости современных винчестеров, а время доступа во много раз больше.
Flash-карта
Устройства, выполненные на одной микросхеме (кристалле) и не имеющие подвижных частей, основаны на кристаллах электрически перепрограммируемой флэш-памяти. Физический принцип организации ячеек флэш-памяти можно считать одинаковым для всех выпускаемых устройств, как бы они ни назывались.
Различаются такие устройства по интерфейсу и применяемому контроллеру, что обусловливает разницу в емкости, скорости передачи данных и энергопотреблении. Multimedia Card (MMC) и Secure Digital (SD) – сходит со сцены из-за ограниченной емкости (64 Мб и 256 Мб соответственно) и низкой скорости работы.
SmartMedia – основной формат для карт широкого применения (от банковских и проездных в метро до удостоверений личности). Тонкие пластинки весом 2 грамма имеют открыто расположенные контакты, но значительная для таких габаритов емкость (до 128 Мбайт) и скорость передачи данных (до 600 Кбайт/с) обусловили их проникновение в сферу цифровой фотографии и носимых МРЗ-устройств.
Memory Stick – “эксклюзивный” формат фирмы Sony, практически не используется другими компаниями. Максимальная емкость – 256 Мбайт, скорость передачи данных доходит до 410 Кбайт/с, цены сравнительно высокие. CompactFlash (CF) – самый распространенный, универсальный и перспективный формат. Легко подключается к любому ноутбуку. Основная область применения – цифровая фотография.
По емкости (до 3 Гбайт) сегодняшние CF-карты не уступают IBM Microdrive, однако отстают по скорости обмена данными (около 2 Мбайт/с). USB Flash Drive – последовательный интерфейс USB с пропускной способностью 12 Мбит/с или его современный вариант USB 2.0 с пропускной способностью до 480 Мбит/с. Сам носитель заключен в обтекаемый компактный корпус, напоминающий автомобильный брелок.
Основные параметры (емкость и скорость работы) полностью совпадают с CompactFlash, поскольку чипы самой памяти остались прежними. Может служить не только “переносчиком” файлов, но и работать как обычный накопитель – с него можно запускать приложения, воспроизводить музыку и сжатое видео, редактировать и создавать файлы.
Низкое среднее время доступа к данным на Flash-диске – менее 2,5 мс. Вероятно, накопители класса USB Flash Drive, особенно с интерфейсом USB 2.0, в перспективе смогут полностью заменить собой обычные дискеты и частично – перезаписываемые компакт-диски, носители Iomega ZIP и им подобные.
PC Card (PCMCIA ATA) – основной тип флэш-памяти для компактных компьютеров. В настоящее время существует четыре формата карточек PC Card: Type I, Type II, Type III и CardBus, различающиеся размерами, разъемами и рабочим напряжением. Для PC Card возможна обратная совместимость по разъемам “сверху вниз”. Емкость PC Card достигает 4 Гб, скорость – 20 Мб/с при обмене данными с жестким диском.
Источник: studfile.net
Как называется универсальное устройство для хранения обработки и передачи информации
Ответы на вопрос Как называется универсальное устройство для хранения обработки и передачи информации
- Компьютер — Универсальное устройство для хранения, обработки и передачи данных 9 букв
- Разгадывать кроссворды
- Видеосервер — Устройство для приема, обработки, передачи в компьютерную сеть и, возможно, локального хранения видеоинформации 11 букв
- Автоматизированная-информационная-система — Совокупность аппаратных и программных средств для хранения обработки и передачи информации 41 букв
- Память — Устройство для хранения информации 6 букв
- Магистраль — Устройство для взаимосвязи и обмена информацией между всеми устройствами компьютера 10 букв
- Носитель — Любой материальный объект используемый для хранения на нем информации 8 букв
- Пейджер — Портативное беспроводное устройство для приема и записи информации 7 букв
- Кассета — Заменяемое устройство для хранения расходуемого материала (напр., фото- и магнитной пленки), деталей, бомб или зарядов системы оружия 7 букв
- Дисковод — Компьютерное устройство для записи и считывания информации 8 букв
- Радио — Устройство для приема звуковых передач 5 букв
- Холодильник — Устройство для хранения продуктов 11 букв
- Садок — Устройство для хранения живой рыбы 5 букв
- Контейнер — Специальное устройство для хранения чего-либо, требующего особого обращения, напр. радиоактивных изотопов 9 букв
- Дисковод — Компьютерное устройство для записывания и считывания информации 8 букв
- Валидатор — Устройство для отображения и проверки информации документов 9 букв
- Антенна — Элемент устройства для приема и передачи эмв 7 букв
- Стеллаж — Устройство для хранения инструментов 7 букв
- Печь — Специальное устройство для тепловой обработки материалов в технологическом процессе 4 буквы
- Печь — Специальное устройство для тепловой обработки материалов 4 буквы
- Данные — Информация, представленная в форме, подходящей для хранения, передачи и обработки автоматизированными средствами 6 букв
- Информатика — Наука о способах получения, накопления, хранения, преобразования, передачи и использования информации. Она включает дисциплины, относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные, вроде анализа алгоритмов, так и довольно конкретные, например, разработка языков программирования 11 букв
- Инфосфера — Глобальная инфраструктура электронных средств хранения, обработки и передачи информации вместе с программным обеспечением, организациями и персоналом, обеспечивающими их разработки и эксплуатацию 9 букв
- Логистика — Наука о планировании, контроле и управлении транспортированием, складированием и другими материальными и нематериальными операциями, совершаемыми в процессе доведения сырья и материалов до производственного предприятия, внутризаводской переработки сырья, материалов и полуфабрикатов, доведения готовой продукции до потребителя в соответствии с интересами и требованиями последнего, а также передачи, хранения и обработки соответствующей информации 9 букв
- Видео — Множество технологий записи, обработки, передачи, хранения и воспроизведения визуального или аудиовизуального материала, а также распространённое название для собственно видеоматериала, телесигнала или кинофильма, в том числе записанного на физическом носителе. Видео отличается от кинематографа только тем, что использует для записи и/или воспроизведения любой другой носитель, кроме 5 букв
- Радиотехника — Наука, изучающая электромагнитные колебания и волны радиодиапазона, методы генерации, усиления, преобразования, излучения и приёма, а также применение их для передачи информации, часть электротехники, включающая в себя технику радиопередачи и радиоприёма, обработку сигналов, проектирование и изготовление радиоаппаратуры 12 букв
- Документ — Материальный носитель информации, предназначенный для ее обработки и передачи во времени и пространстве 8 букв
- Канал — Линия связи, коммуникации; устройство для передачи информации 5 букв
- Канал — Устройство для передачи информации 5 букв
- Модем — Устройство осуществляющее преобразование представления и скорости передачи информации между эвм и внешним устройством 5 букв
- Байт — Единица хранения и обработки цифровой информации. В настольных вычислительных системах байт считается равным восьми битам, в этом случае он может принимать одно из 256 различных значений. Следует понимать, что количество бит в байте не является однозначной величиной и может варьироваться в широком диапазоне. Так, в первых компьютерах размер байта был равен 6 битам 4 буквы
- Байт — Единица хранения и обработки цифровой информации 4 буквы
- Информатика — Научное направление, занимающееся изучением законов, методов накапливания, обработки и передачи информации с помощью ЭВМ 11 букв
- Буфер — Компьютерная память, которая задействуется при передаче информации с одного устройства на другое 5 букв
- Жесткий — Устройство хранения большого количества информации. диск 7 букв
- Видеодиск — Устройство долговременного хранения информации 9 букв
- Телефон — Устройство для передачи и приёма звука на расстояние. Современные телефоны осуществляют передачу посредством электрических сигналов 7 букв
- Холодильник — Устройство, поддерживающее низкую температуру в теплоизолированной камере. Применяется обычно для хранения пищи или предметов, требующих хранения в прохладном месте. Бытовой холодильник имеется почти в каждой семье в развитых странах. Работа холодильника основана на использовании теплового насоса, переносящего тепло из рабочей камеры холодильника наружу, где оно рассеивается во внешнюю среду 11 букв
- Сцепление — Устройство для передачи и отмены передачи вращательного момента от двигателя на трансмиссию (автомобильное) 9 букв
- Элеватор — Сооружение для хранения большого количества зерна, оборудованное механизмами для его приема, взвешивания, обработки и отгрузки 8 букв
- Гумно — Огороженный участок земли в крестьянском хозяйстве, предназначенный для хранения, молотьбы и другой обработки зёрен хлеба. В гумне может стоять деревянное сооружение, называемое рига или овин, в котором сушатся снопы сена и молотится зерно. Также для молотьбы зёрен может быть возведён отдельный деревянный сарай, называемый клуня 5 букв
- Плуг — Сельскохозяйственное орудие для основной обработки почвы. Плугами также называются устройства для работы под водой, для прокладки кабелей, а также подготовки земной поверхности перед звуковым зондированием и гидролокацией бокового обзора при поиске нефти. Первоначально плуги тащили на себе сами люди, затем волы, а ещё позже лошади 4 буквы
- Линия — Система устройств для телеграфной или телефонной связи, для передачи и распределения электроэнергии 5 букв
- Диск — Жесткий магнитный накопитель для хранения информации 4 буквы
- Табулятор — Электромеханическая машина, предназначенная для автоматической обработки числовой и буквенной информации, записанной на перфокартах, с выдачей результатов на бумажную ленту или специальные бланки 9 букв
- Табулятор — Вычислительная машина, предназначенная для автоматической обработки числовой и буквенной информации 9 букв
- Ток — Оборудованная площадка для хранения и первичной обработки зерна 3 буквы
- Символ — Знак, используемый для передачи информации 6 букв
- Эталон — Точная мера или точный измерительный прибор, служащие для воспроизведения, хранения и передачи единицы измерения 6 букв
- Код — Система условных обозначений или сигналов, предназначенных для передачи информации 3 буквы
- Компьютер — Машина для приема, переработки, хранения и выдачи информации в электронном виде 9 букв
Источник: wordparts.ru
Разбираемся вместе: что такое система хранения данных
Надёжное хранение данных — задача, которую приходится решать каждому бизнесу. Но когда повышаются объёмы информации, растут и требования к надёжности хранения данных. Чтобы организовать наилучшую работу с информацией, стоит обратиться к СХД — системе хранения данных.
В материале расскажем о том, что такое и как устроены СХД, какие проблемы они решают, как классифицируются и на какие характеристики следует смотреть в первую очередь, если вы не так давно в этой отрасли.
Что такое СХД и какие проблемы она решает
СХД (Система хранения данных или Сервер хранения данных) — это устройство для хранения и управления данными, их резервного копирования. Она призвана решить типичные проблемы, связанные с растущими объёмами информации в любой организации.
Если раньше все данные могли храниться буквально на одном жёстком диске, то сейчас любая функциональная система требует отдельного хранилища – к примеру, серверов электронной почты, СУБД, домена и так далее. Поэтому с помощью СХД можно организовать децентрализацию информации (рассредоточение её по разным хранилищам).
Лавинообразный рост размера информации, который вызван, с одной стороны, ужесточением регулирования и требованием сохранять всё больше информации, связанной с ведением бизнеса. С другой стороны, ужесточение конкуренции требует всё более глубокого анализа информации о рынке, клиентах, их предпочтениях, заказах и действиях конкурентов. Но количества жёстких дисков, которые вы можете установить в конкретный сервер, не может покрыть необходимую системе ёмкость. В этом тоже может помочь СХД.
Хранение данных — не единственная функция современных СХД. Они также предлагают экономить место в хранилище с помощью дедупликации и компрессии. Компрессия позволяет системе сжимать файлы, исключая избыточную информацию, а дедупликация помогает экономить место для хранения, исключая избыточные файлы и оставляя лишь ссылки на них.
Некоторым компаниям тяжело контролировать и ограничивать доступ из-за политики безопасности предприятия. Например, касается как доступа к данным по существующим для этого каналам (локальная сеть), так и физического доступа к носителям.
Также отметим высокие затраты используемых ресурсов для поддержания работоспособности всей информационной системы предприятия, начиная от необходимости содержать большой штат квалифицированного персонала и заканчивая многочисленными недешёвыми аппаратными решениями.
Устройство СХД
Основные компоненты типичной СХД — массив жёстких дисков (HDD или SSD), кэш-память, контроллер дискового массива, внешний корпус и несколько блоков питания.
Главная фишка СХД — это скорость работы дисковой системы. Например, если ваши диски стоят внутри сервера они не будут работать с такой же производительностью, как сервер подключённый к СХД.
Какие бывают системы хранения данных
Существует классификация СХД: они делятся на файловые, блочные и объектные. Каждый вид СХД определяет в каком виде хранятся данные, способ доступа к ним, и, как результат, простоту управления и скорость доступа к данным.
Файловые
Хранят информацию в виде файлов, собранных в каталоги (папки). Файлы организуются и извлекаются благодаря метаданным, которые сообщают, где находится тот или иной файл. Условно такую систему можно представить в виде каталога.
Блочные
Данные хранятся независимо друг от друга. Каждому такому блоку присваивается идентификатор, который позволяет системе размещать каждый блок, где ей удобно. Блочные хранилища не полагаются на единственный путь к данным (в отличии от файловых хранилищ).
Объектные
Расщепляют файлы на «объекты», которые находятся в одном, общем хранилище. Оно может быть поделено на тома, каждый из которых может иметь уникальный идентификатор и подробные метаданные, которые позволяют быстро находить объекты. Подобный подход — это распределённая система.
Принцип работы СХД — NAS, SAN и DAS
Существует несколько аппаратных компонентов, программного обеспечения и протоколов, которые в конечном итоге придают решениям для хранения данных их особые свойства.
На основе классификации выше выделяют два основных типа СХД: они различаются уровнем хранения, чтения и записи данных.
- Первый вариант работает с данными файлового уровня. Это означает, что такое хранилище, по сути, функционирует как сервер с собственной файловой системой. На практике клиентский сервер даёт такие команды, как «записать Х битов в этот файл» или «извлечь Х битов из этого файла» соответственно. Этот тип хранилища называется NAS.
- Второй вариант — это доступ к данным на уровне блоков. Это ускоряет обмен данными между сервером и хранилищем, поскольку он прямой, то есть «блок записи X» или «блок вызова X». Такие репозитории связаны друг с другом и с сервером либо как DAS, либо через SAN.
О каждом из них расскажем подробнее.
NAS
NAS расшифровывается как Network Attached Storage, что можно условно перевести как сетевое хранилище. Поскольку данные обрабатываются на уровне файлов, сервер представляется NAS как сетевой сервер со своей собственной файловой системой.
Если объяснить проще — представьте себе стационарный компьютер, который подключён к домашнему роутеру. На нём хранятся фото, видео, документы и другие данные. Сетевой доступ разрешен всем пользователям — приблизительно так выглядит NAS.
NAS-хранилище может принимать разные формы. Например, к производственному серверу могут быть подключены другие серверы, виртуальные машины или так называемые дисковые станции, на которых находится другое количество съёмных жестких дисков.
Преимущества NAS:
- Доступность и низкая стоимость.
- Простота подключения и управления.
- Гибкость, возможность быстро увеличить объём для хранения данных.
- Универсальность клиентов (компьютер под управлением любой операционной системы может получить доступ к файлам).
Недостатки NAS:
- Хранение данных только в виде файлов.
- Медленный доступ к информации по сетевым протоколам (по сравнению с локальной системой).
- Невозможность работы некоторых приложений с сетевыми дисками.
DAS
DAS расшифровывается как Direct Attach Storage — прямое подключение к рабочей станции, хранилищу). Например, подключение внешнего диска по USB условно можно назвать DAS.
Из принципиальной простоты архитектуры DAS следуют её основные преимущества: доступная цена и относительная простота внедрения. Кроме того, такой конфигурацией легче управлять ввиду хотя бы того, что число элементов системы мало.
Внутри системы находится блок питания, охлаждение и RAID-контроллер, который обеспечивает надёжность и отказоустойчивость хранилища. Управляется при помощи встроенной операционной системы.
Достоинства DAS:
- Легкость развёртывания и администрирования.
- Высокая скорость передачи данных.
- Низкая стоимость оборудования.
Недостатки DAS:
- Требует выделенного сервера).
- Ограничения в подключениях (не больше двух серверов).
SAN
В свою очередь SAN — это сети хранения данных. Как правило они представлены в виде внешних хранилищ на нескольких сетевых блочных устройствах и реализованы в виде протокола FC (Fiber Channel) или iSCSI (Internet Small Computer System Interface). Это блочный доступ непосредственно к устройству хранения — диску или наборов дисков в виде RAID-групп или логических устройств.
Кстати, вышеупомянутый DAS может быть очень мощным и часто более дешёвым, чем SAN. Однако в то же время недостаток DAS в том, что он не может быть легко расширен — количество подключённых компьютеров ограничено физическим количеством портов SAS на DAS (обычно их всего четыре). Поэтому многие компании и учреждения предпочитают выбирать блочные хранилища, подключенные через SAN.
Преимущества SAN:
- Высокая скорость работы, низкая задержка.
- Гибкость и масштабируемость.
- Хранение данных блоками.
- Высокая надёжность обмена и хранения данных.
- Разгрузка подсети от служебного трафика.
Недостатки SAN:
- Сложность проектирования
- Высокая стоимость.
- Невозможность некоторых приложений и систем работать с протоколом iSCSI.
Как выбрать СХД?
В первую очередь нужно понимать, какие задачи она будет решать. Важно определиться с несколькими базовыми параметрами.
Тип данных
Разные типы данных требуют разной скорости доступа, технологий обработки, компрессии и так далее. К примеру, виртуальный СХД для работы с большими медиа-файлами отличается от той системы, которая будет работать с неструктурированными данными для нейросети.
Объём данных
От этого зависит выбор дисковых накопителей. Иногда можно обойтись SSD потребительского класса — если известно, что ёмкость СХД даже в худшем случае не будет превышать 300 ГБ, а скорость доступа не критична.
Отказоустойчивость
Необходимо представлять, какова стоимость потери данных за определённое время. Это поможет рассчитать RPO (Recovery-Point Objective) и RTO (Recovery Time Objective), а также избежать лишних затрат на резервное копирование. Бэкапы, бэкапы и ещё раз бэкапы.
Производительность
Если СХД закупается под новый проект (нагрузку которого сложно предугадать), то лучше пообщаться с коллегами, которые уже решали эту задачу или протестировать СХД.
Вендор
Иногда даже для ресурсоемкого сервиса подойдет бюджетное или среднеуровневое решение (StarWind, Huawei, Fujitsu). Однако у топовых производителей — NetApp, HPE, Dell EMC — линейка продуктов достаточно широкая, и сравнительно недорогие СХД здесь также можно найти. В любом случае, желательно сильно не расширять количество вендоров на одной инфраструктуре.
Если сейчас вы находитесь в поисках решения для работы с данными, арендовать выделенный web-сервер и СХД (системы хранения данных) можно в одном из наших ЦОД. Мы, со своей стороны, обеспечим сервер быстрым соединением с интернетом на скорости до 10 Гбит/сек, постоянным подключением к электричеству и поддержкой 27/7 ;).
Источник: www.reg.ru