Информация которую обрабатывают или создают помощью программ

Обработка информации — процесс планомерного изменения содержания или формы представления информации.

Обработка информации производится в соответствии с определенными правилами некоторым субъектом или объектом (например, человеком или автоматическим устройством). Будем его называть исполнителем обработки информации.

Исполнитель обработки, взаимодействуя с внешней средой, получает из нее входную информацию, которая подвергается обработке. Результатом обработки является выходная информация, передаваемая внешней среде. Таким образом, внешняя среда выступает в качестве источника входной информации и потребителя выходной информации.

Обработка информации происходит по определенным правилам, известным исполнителю. Правила обработки, представляющие собой описание последовательности отдельных шагов обработки, называются алгоритмом обработки информации.

Исполнитель обработки должен иметь в своем составе обрабатывающий блок, который назовем процессором, и блок памяти, в котором сохраняются как обрабатываемая информация, так и правила обработки (алгоритм). Все сказанное схематически представлено на рисунке.

Парсинг в Python за 10 минут!

Схема обработки информации

Пример. Ученик, решая задачу на уроке, осуществляет обработку информации. Внешней средой для него является обстановка урока. Входной информацией — условие задачи, которое сообщает учитель, ведущий урок. Ученик запоминает условие задачи. Для облегчения запоминания он может использовать записи в тетрадь — внешнюю память.

Из объяснения учителя он узнал (запомнил) способ решения задачи. Процессор — это мыслительный аппарат ученика, применяя который для решения задачи, он получает ответ — выходную информацию.

Схема, представленная на рисунке, — это общая схема обработки информации, не зависящая от того, кто (или что) является исполнителем обработки: живой организм или техническая система. Именно такая схема реализована техническими средствами в компьютере. Поэтому можно сказать, что компьютер является технической моделью “живой” системы обработки информации. В его состав входят все основные компоненты системы обработки: процессор, память, устройства ввода, устройства вывода (см. “Устройство компьютера” 2).

Входная информация, представленная в символьной форме (знаки, буквы, цифры, сигналы), называется входными данными. В результате обработки исполнителем получаются выходные данные. Входные и выходные данные могут представлять собой множество величин — отдельных элементов данных. Если обработка заключается в математических вычислениях, то входные и выходные данные — это множества чисел. На следующем рисунке X: x1, x2, …, xn> обозначает множество входных данных, а Y: y1, y2, …, ym> — множество выходных данных:

Схема обработки данных

Обработка заключается в преобразовании множества X в множество Y:

Анимируем через нейронную сеть.

P(X) Y

Здесь Р обозначает правила обработки, которыми пользуется исполнитель. Если исполнителем обработки информации является человек, то правила обработки, по которым он действует, не всегда формальны и однозначны. Человек часто действует творчески, не формально. Даже одинаковые математические задачи он может решать разными способами. Работа журналиста, ученого, переводчика и других специалистов — это творческая работа с информацией, которая выполняется ими не по формальным правилам.

Для обозначения формализованных правил, определяющих последовательность шагов обработки информации, в информатике используется понятие алгоритма (см. “Алгоритм” 2). С понятием алгоритма в математике ассоциируется известный способ вычисления наибольшего общего делителя (НОД) двух натуральных чисел, который называют алгоритм Евклида. В словесной форме его можно описать так:

1. Если два числа равны между собой, то за НОД принять их общее значение, иначе перейти к выполнению пункта 2.

2. Если числа разные, то большее из них заменить на разность большего и меньшего из чисел. Вернуться к выполнению пункта 1.

Здесь входными данными являются два натуральных числа — х1 и х2. Результат Y — их наибольший общий делитель. Правило (Р) есть алгоритм Евклида:

Алгоритм Евклида (х1, х2) Y

Такой формализованный алгоритм легко запрограммировать для современного компьютера. Компьютер является универсальным исполнителем обработки данных. Формализованный алгоритм обработки представляется в виде программы, размещаемой в памяти компьютера. Для компьютера правила обработки (Р) — это программа.

Методические рекомендации

Объясняя тему “Обработка информации”, следует приводить примеры обработки, как связанные с получением новой информации, так и связанные с изменением формы представления информации.

Первый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний. К этому типу обработки относится решение математических задач. К этому же типу обработки информации относится решение различных задач путем применения логических рассуждений. Например, следователь по некоторому набору улик находит преступника; человек, анализируя сложившиеся обстоятельства, принимает решение о своих дальнейших действиях; ученый разгадывает тайну древних рукописей и т.п.

Структурирование данных также может быть отнесено ко второму типу обработки. Структурирование связано с внесением определенного порядка, определенной организации в хранилище информации. Расположение данных в алфавитном порядке, группировка по некоторым признакам классификации, использование табличного или графового представления — все это примеры структурирования.

Особым видом обработки информации является поиск. Задача поиска обычно формулируется так: имеется некоторое хранилище информации — информационный массив (телефонный справочник, словарь, расписание поездов и пр.), требуется найти в нем нужную информацию, удовлетворяющую определенным условиям поиска (телефон данной организации, перевод данного слова на английский язык, время отправления данного поезда). Алгоритм поиска зависит от способа организации информации. Если информация структурирована, то поиск осуществляется быстрее, его можно оптимизировать (см. “Поиск данных”).

В пропедевтическом курсе информатики популярны задачи “черного ящика”. Исполнитель обработки рассматривается как “черный ящик”, т.е. система, внутренняя организация и механизм работы которой нам не известен. Задача состоит в том, чтобы угадать правило обработки данных (Р), которое реализует исполнитель.

Исполнитель обработки вычисляет среднее значение входных величин: Y = (X1 + X2)/2

На входе — слово на русском языке, на выходе — число гласных букв.

Наиболее глубокое освоение вопросов обработки информации происходит при изучении алгоритмов работы с величинами и программирования (в основной и старшей школе). Исполнителем обработки информации в таком случае является компьютер, а все возможности по обработке заложены в языке программирования. Программирование есть описание правил обработки входных данных с целью получения выходных данных.

Следует предлагать ученикам два типа задач:

— прямая задача: составить алгоритм (программу) для решения поставленной задачи;

— обратная задача: дан алгоритм, требуется определить результат его выполнения путем трассировки алгоритма.

При решении обратной задачи ученик ставит себя в положение исполнителя обработки, шаг за шагом выполняя алгоритм. Результаты выполнения на каждом шаге должны отражаться в трассировочной таблице.

Источник: xn—-7sbbfb7a7aej.xn--p1ai

Представление информации в компьютере

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы преобразовать таким образом музыкальный звук, можно через небольшие промежутки времени измерять его интенсивность на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью программ для компьютера можно выполнить преобразования полученной информации, например наложить друг на друга звуки различных источников. После этого результат можно преобразовать обратно в звуковую форму.

Аналогичным образом на компьютере можно обработать и текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства для восприятия человеком по этим числам строится соответствующее изображение буквы.

Читайте также:
Какие переключения должны выполняться по программам и бланкам переключений по выводу из работы

Компьютер может обрабатывать числовую, текстовую, графическую, звуковую, видеоинформацию только тогда, когда она представлена в нем в двоичном коде (двоичная форма представления информации), т. е. используется алфавит мощностью в два символа: логический 0 и логическая 1. Связано это с тем, что информацию удобно представлять в виде последовательности сигналов (электрических импульсов): сигнал отсутствует – (0), сигнал есть – (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц – машинным языком. Каждая цифра машинного двоичного кода несет количество информации, равное одному биту.

Бит – это единица информации, представляющая собой двоичный разряд, который может принимать значение 0 или 1. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а значит, она несет количество информации, равное одному биту. Следовательно, две цифры несут информацию 2 бита, четыре разряда – 4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде. Благодаря введению понятия единицы информации появилась возможность определения размера любой информации числом бит. Поэтому объем информации определяют в битах.

Для удобства информацию, представленную в компьютере, описывают многоразрядными последовательностями двоичных чисел. Эти последовательности объединяются в группы по 8 бит. Такая группа именуется байтом; например, число 11010011 – это информация величиной 1 байт. Байт – это восемь последовательных бит. В 1 байте можно кодировать значение одного символа из 256 (28) возможных комбинаций.

Более крупными единицами информации являются: килобайт (Кбайт), мегабайт (Мбайт), гигабайт (Гбайт): 1 Кбайт = 1024 байт; 1 Мбайт = 1024 Кбайт; 1 Гбайт = – 1024 Мбайт. В этих единицах измеряется емкость запоминающих устройств.

Перед тем как кодировать любую информацию, нужно договориться о том, какие используются коды, в каком порядке они записываются, хранятся и передаются. Это называется языком представления информации.

Кодирование текстовой информации. В настоящее время большинство пользователей с помощью компьютера обрабатывают текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Чтобы закодировать один символ, традиционно используют количество информации, равное 1 байту, т. е. I = 1 байт = 8 бит. В 60‑е годы XX века это было закреплено комитетом ASCII США в ASCII‑стандарте.

Формула, которая связывает между собой количество возможных событий Km количество информации 7, позволяет вычислить, сколько различных символов можно закодировать (считая, что символы – это возможные события):

Следовательно, для представления текстовой информации можно использовать алфавит мощностью 256 символов. Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

В середине 90‑х годов XX века появилась новая кодировка – Unicode, поддерживающая 65 536 различных символов. В ней на каждый символ отводится по 2 байта:

К = 21 = 216 = 65 536.

Следует отметить, что кодировка Unicode используется в случаях, когда к кодированию не предъявляются дополнительные требования (например, когда необходимо указать на возникшую ошибку, исправить ошибку, обеспечить секретность информации или использовать ее в различных операционных системах).

Кодирование графической информации. В середине 50‑х годов для больших ЭВМ, которые применялись в научных и военных исследованиях, впервые было реализовано представление данных в графическом виде. В настоящее время широко используются технологии обработки графической информации с помощью персонального компьютера (ПК).

Графический интерфейс пользователя стал стандартом де‑факто для программного обеспечения разных классов, начиная с операционных систем. Это связано со свойством человеческой психики: наглядность способствует более быстрому пониманию. Широкое применение получила специальная область информатики – компьютерная графика, которая изучает методы и средства создания и обработки изображений с помощью программно‑аппаратных вычислительных комплексов. Без нее трудно представить уже не только компьютерный, но и вполне материальный мир, так как визуализация данных применяется во многих сферах человеческой деятельности: в медицине, образовании, в опытно‑конструкторских разработках, научных исследованиях и др.

Особенно интенсивно технология обработки графической информации с помощью компьютера стала развиваться в 80‑х годах. Графическую информацию можно представлять в двух формах: аналоговой и дискретной. Живописное полотно, цвет которого изменяется непрерывно, – это пример аналогового представления, а изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета, – это дискретное представление. Для представления графической информации в двоичной форме используются растровый и векторный способы.

Растровый способ. Вертикальными и горизонтальными линиями изображение разбивается на отдельные точки; каждому элементу ставятся в соответствие коды его цвета и место, которое он занимает. При этом качество кодирования будет зависеть от размера точки и количества используемых цветов.

Чем меньше размер точки (т. е. изображение составляется из большего количества точек), тем выше качество кодирования. Чем большее количество цветов используется (т. е. точка изображения может принимать больше возможных состояний), тем больше информации несет каждая точка, а значит, увеличивается качество кодирования. Поэтому информация о каждой клетке будет иметь довольно сложный вид: номер клетки, яркость, тон, насыщенность, цвет и др.

Векторный способ. Информация вычисляется по специальным формулам, описывающим какой‑либо объект.

Трехмерная графика (3D). Способ представления графической информации, в котором сочетаются векторный и растровый способы формирования изображений. Теоретически 3D изучает методы и приемы построения объемных моделей объектов в виртуальном пространстве, а на практике создает объемные модели на плоскости.

Кодирование звуковой информации. Мир наполнен самыми разнообразными звуками: тиканьем часов и гулом моторов, завыванием ветра и шелестом листьев, пением птиц и голосами людей. О том, как рождаются звуки и что они собой представляют, люди начали догадываться очень давно.

Еще древнегреческий философ и ученый‑энциклопедист Аристотель, исходя из наблюдений, объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то разрежает, то уплотняет воздух, а из‑за упругости воздуха эти чередующиеся воздействия передаются дальше в пространство – от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука.

На слух человек воспринимает упругие волны, имеющие частоту где‑то в пределах от 16 Гц до 20 кГц (1 Гц – одно колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В учении о звуке важны такие понятия, как тон и тембр звука. Всякий реальный звук, будь то игра на музыкальных инструментах или голос человека, – это своеобразная смесь многих гармонических колебаний с определенным набором частот.

Колебание, которое имеет наиболее низкую частоту, называют основным тоном, другие колебания называют обертонами.

Тембр – это разное количество обертонов, присущих тому или иному звуку, которое придает ему особую окраску. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. Именно по тембру мы легко можем отличить звуки рояля и скрипки, гитары и флейты, узнать голос знакомого человека.

Музыкальный звук можно характеризовать тремя качествами:

– тембром, т. е. окраской звука, которая зависит от формы колебаний;

– высотой, определяющейся числом колебаний в секунду (частотой);

– громкостью, зависящей от интенсивности колебаний.

Звуковую информацию можно представить в дискретной и аналоговой формах. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно, принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся.

Читайте также:
Получить второе высшее юридическое образование дистанционно по ускоренной программе

Семпл – это промежуток времени между двумя измерениями амплитуды аналогового сигнала. Дословно sample переводится с английского как «образец». В мультимедийной и профессиональной звуковой терминологии это слово имеет несколько значений. Семплом называют также любую последовательность цифровых данных, которые получили путем аналого‑цифрового преобразования. Сам процесс преобразования называют семплированием или дискредитацией.

Важными параметрами семплирования являются частота и разрядность.

Частота – это количество измерений амплитуды аналогового сигнала в секунду. Если частота семплирования не будет более чем в два раза превышать частоту верхней границы звукового диапазона, то на высоких частотах будут происходить потери.

Так как диапазон колебаний звуковых волн находится в пределах от 20 Гц до 20 кГц, то стандартной является частота 44,1 кГц – выбрана с таким расчетом, чтобы количество измерений сигнала в секунду было больше, чем количество колебаний за тот же промежуток времени. Если же частота дискредитации значительно ниже частоты звуковой волны, то амплитуда сигнала успевает несколько раз измениться за время между измерениями, а это приводит к тому, что цифровой отпечаток несет хаотичный набор данных. При цифро‑аналоговом преобразовании такой семпл не передает основной сигнал, а только выдает шум. Для экономии вычислительных ресурсов ЭВМ в мультимедийных приложениях довольно часто применяют меньшие частоты: 11, 22, 32 кГц. Это приводит к уменьшению слышимого диапазона частот, и как следствие происходит искажение звука.

Разрядность указывает, с какой точностью происходят изменения амплитуды аналогового сигнала. Точность, с которой при оцифровке передается значение амплитуды сигнала в каждый из моментов времени, определяет качество сигнала после цифро‑аналогового преобразования. Именно от разрядности зависит достоверность восстановления формы волны.

Для кодирования значения амплитуды обычно используют 8‑, 16– или 20‑битовое представление значений амплитуды. Если использовать 8‑битовое кодирование, то можно достичь точности изменения амплитуды аналогового сигнала до 1/256 от динамического диапазона цифрового устройства (28 = 256). Если использовать 16‑битовое кодирование для представления значений амплитуды звукового сигнала, то точность измерения возрастет в 256 раз. В современных преобразователях принято использовать 20‑битовое кодирование сигнала, что позволяет получать высококачественную оцифровку звука.

Но эти данные истинны только для того сигнала, чей максимальный уровень – 0 дБ. Если нужно семплировать сигнал с уровнем 6 дБ и разрядностью 16 бит, то для кодирования его амплитуды будет оставаться на самом деле только 15 бит. Если нужно семплировать сигнал с уровнем 12 дБ, то для кодирования его амплитуды будет оставаться только 14 бит. С увеличением уровня сигнала увеличивается разрядность его оцифровки, а значит, уменьшается уровень нелинейных искажений, который принято называть шумом квантования. В свою очередь, каждые 6 дБ, уменьшающие уровень, будут «съедать» по 1 биту.

Дата добавления: 2018-10-26 ; просмотров: 1517 ; Мы поможем в написании вашей работы!

Источник: studopedia.net

Виды информации. Действия с информацией

Урок 3: Виды информации

Урок 3: Виды информации

Без информации люди не смогли бы ориентироваться в окружающем мире. Ежесекундно мы получаем разного рода информацию. Например: смотрим в окно и узнаем о погоде; включаем телевизор и слушаем новости; читаем книги и познаем интересные факты.

План урока:

Понятие информации ее виды, свойства, способы получения

Информация — это сведения об объектах, событиях, явлениях природы, процессах. Люди получают информацию о температуре воздуха, цвете глаз, размере предмета, запахе духов, вкусе.

Способов получения информации человеком великое множество. Человек воспринимает информацию с помощью органов чувств: глаза (зрение), уши (слух), язык (вкус), кожа (осязание), нос (обоняние).

Выделяют следующие виды информации по способу ее восприятия:

  • визуальная информация;
  • звуковая информация;
  • обонятельная информация;
  • вкусовая информация;
  • тактильная информация.

1

Визуальной называют информацию, которая воспринимается человеком посредством глаз. Зрительной информации отведено 90%. Источником зрительной информации может быть книга, светофор, телевизор, рекламный щит и т.п.

2

Еще один вид информации по способу ее восприятия – звуковая или аудиальная информация. Звуковую информацию человек получает с помощью ушей. Звуковая информация передается посредством радио, телевизора, планшета, телефона и т.д. Животные также используют способ передачи информации в виде звуков: собака лает, когда хочет сообщить человеку об опасности; кошка мяукает, если просит поесть.

3

Нос помогает получать обонятельную информацию. Поднесите к носу ароматный кофе, пройдитесь в лесу после дождя или зайдите в пекарню. Нос уловит все ароматы. Благодаря обонятельной информации, человек делает выводы о том, нравится ему тот или иной запах.

4

Вкусовая информация воспринимается органами рта. Вкусовые рецепторы в ротовой полости помогают определить температуру и вкус объекта, который попадает в рот. Как правило, источником вкусовой информации служат продукты питания или медикаменты. Достаточно вспомнить кислый вкус аскорбиновой кислоты или горький привкус микстуры от кашля, которую дает мама.

5

Тактильная или осязательная информация – это вид информации, которую человек воспринимает кожей.

Источники тактильной информации:

  • Растение. Потрогав растение, узнаете, что у фикуса гладкие листья, а у кактуса острые колючки.
  • Жидкость. Прикоснувшись к тарелке с супом, ощутите, горячий он или холодный. Искупавшись в термальных источниках,узнаете,что в бассейне вода теплая. В лесной болоте трясина вязкая.
  • Материал. Потрогав мех или шелк, ощутите, что они мягкие и гладкие. Скульптор работает с вязкой глиной. А повар использует острый нож.
  • Солнце. Выйдя на улицу в солнечный день, почувствуешь, как солнечные лучи греют кожу.
  • Ветер. В морозный день ветер со снегом покалывает кожу лица.

6

Человек получает тактильную информацию посредством кожи о рельефе, фактуре, остроте, мягкости, упругости, жесткости, вибрации или температуре объекта.

Есть люди – инвалиды по зрению, которые не могут получать зрительную информацию. Для них был изобретен шрифт Брайля, рельефно-линейное письмо. В этом случае тактильная информация имеет ведущее значение.

7

Роль органов чувств в процессе восприятия информации очень важна. Органы чувств человека как источники информации являются не самыми достоверными, когда такие приборы как линейки, весы, транспортир, циркуль, бинокль, барометр помогают получить точные данные. Приборы дают визуальный вид информации: транспортир позволяет измерить угол, весы — массу, барометр – атмосферное давление, циркуль – расстояние на карте, бинокль — наблюдать удаленные предметы.

8

К свойствам информации относятся:

  • актуальность;
  • объективность;
  • достоверность;
  • полнота;
  • полезность;
  • понятность.

Значение невербальных средств общения в передаче информации

В отличие от других форм жизни, человек умеет общаться и даже получает от этого удовольствие. К основным видам информации также относятся вербальная и невербальная. Использование вербальных и невербальных каналов передачи информации зависит от человека, его эмоциональности, ораторского искусства. Вербальное общение — это общение словами. Невербальная информация дополняет речь жестами, позой, мимикой, интонацией.

Взаимодействие вербальных и невербальных средств передачи информации обеспечивает высокий процент передачи информации собеседнику.

9

Виды информации по форме представления

Какие виды информации бывают в информатике?

По форме представления различают следующие виды информации:

  1. текстовая информация;
  2. числовая информация;
  3. графическая информация;
  4. видеоинформация.

Комбинация символов (буквы, арифметические знаки, цифры и пробелы) относится к текстовому виду информации. Примерами числовой и текстовой информации являются сочинение школьника, список продуктов в чеке, рекламная вывеска и т.д.

Примером числовой информации может служить математический пример, таблица умножения, график показаний счетчика.

Графическая информация может быть представлена в виде диаграмм, фотографии, графиков, рисунков, чертежей, схем, таблиц, карт и т.п. Обработка графической информации включает изменение параметров (качество изображения, количество цветов, размер) или формата графических файлов (TIFF, GIF, PCX, JPEG и др.).

Читайте также:
Какие есть программы для ретуши фотографий

10

Формы представления графической информации используются на уроках физики, природоведения, информатики, черчения и т.д. Это могут быть конспекты, презентации, чертежи.

Ученые установили, что текстовая информация усваивается лишь на 70%. Обогащенный изображениями текст, позволяет усвоить материал на 95%.

Видеоинформация – это информация, включающая изображения, звук, анимацию. Она может храниться на магнитной ленте, кинопленке, оптическом диске или карте памяти. Примером видеоинформации может быть любимый мультфильм или телевизионная реклама.

11

Основные виды компьютерной анимации:

  • Анимация по кадрам – это ролик, смонтированный из серии изображений.
  • Запись движения — это видеозапись с последующей обработкой на компьютере.
  • Анимация 3D – это анимация, сформированная при помощи программного обеспечения (3DS MAX, XSI, MAYA).

PowerPoint – программа для создания анимации. Презентация PowerPoint может состоять из изображений, видеофрагментов, звукового сопровождения и спецэффектов.

Информация может быть комбинированной. В этом случае она включает видеоинформацию, звуковое сопровождение и числовые данные.

В информатике виды информации по форме представления можно создавать или преобразовывать с применением компьютерных программ. Paint помогает в создании графических изображений, WordPad работает с текстовой информацией, Калькулятор совершает расчеты.

Действия с информацией. Какие типы действий человек выполняет с информацией?

Ежедневно человек совершает разные действия. Он ходит, общается, платит за проезд, делает покупки, читает, ест и т.д. Этому его научили другие люди своим примером или передачей информации.

Человек совершает действия с информацией при просмотре фильма, во время игры в шашки, при решении задач, при создании рецепта блюда.

Рассмотрим подробнее, какие действия можно выполнять с информацией.

12

Поиск информации. Способы поиска информации

Что такое поиск информации? Это действия, связанные с получением информации. Рассмотрим примеры поиска информации:

  1. Чтобы добраться от одной станции метро до другой, необходимо изучить схему метро.
  2. Для получения информации о знаменитой картине можно отправиться в музей, на выставку или в библиотеку.
  3. Узнать новости можно, прочитав газеты.
  4. Изучить историю страны можно, посмотрев документальный фильм.
  5. Для приготовления вкусного обеда достаточно посмотреть кулинарное шоу, спросить совета у знакомых, поискать рецепты в интернете.

Перед началом любого действия необходимо найти информацию, которая понадобится для его выполнения, выбрать источники и средства ее получения.

Носители информации. Виды хранения информации

Для хранения информации (адреса знакомых и коллег, правила орфографии, формулы и время встречи) человек использует свою память, предметы для записи или цифровые устройства.

Речь идет о видах хранения информации и видах накопителей информации.

Какие виды носителей информации существуют?

Родоначальником бумаги и книг был Папирус (3000 лет до н.э.).

Для сохранения пейзажа художники рисовали живописные полотна на ткани.

Архитектурные сооружения архитекторов оставили память об исторической эпохе.

В 1839 году изобрели фотографию, а в 1896 году запустили киноиндустрию.

Нотная грамота позволяет хранить звуковую информацию на бумажном носителе, амагнитофоны — на магнитной ленте.

Так человек использует для хранения разного рода информации бумажный блокнот, магнитный диск, картины, кинопленку, фотографии и рисунки.

13

Сегодня появились новые виды электронных носителей информации. Это лёгкие накопители, вмещающие большой объем данных и позволяющие сохранить многовековые знания человечества:

  • карта памяти;
  • флэш-карта;
  • жесткий диск;
  • CD, DVD-диски.

Виды передачи информации

Передача информации осуществляется через газеты, телевидение, фотографии, видеосюжеты, социальные сети и т.д.

Виды информации по форме передачи характерны наличием источника и приемника информации.

14

Рассмотрим примеры видов и способов передачи информации на примерах.

  • Дети играют в «Морской бой», передают друг другу команды к действию. Это взаимообмен информацией.
  • Семья (приёмники информации) смотрит новости по ТВ (источник).
  • Подготовка школьником (приёмник) доклада по биологии предполагает работу со справочниками, картами, иллюстрациями, интернетом (источники).
  • Луговые цветы (источник) с помощью ароматов сообщают насекомым (приемник) о готовности нектара.
  • Медведь (приемник), анализируя изменения в природе (источник), узнает о наступлении зимы и ложится в спячку.

15

Все реже человек получает информацию от природы. Чаще он использует приборы или современные виды каналов передачи информации: телефон, компьютерная сеть, телеграф, радио, интернет.

Выделяют виды источников информации и их характеристики:

Первичные источники – это исходная информация: результат опыта на уроке химии или исторический документ (Первый указ Петра 1, Манифест «О даровании вольности и свободы всему российскому дворянству»).

Вторичные источники – преобразованная информация после обработки: статья в газете о прошедшем событии на основе первичных источников и рассказа очевидцев.

Обработка информации. Устройства обработки информации

Основное действие, выполняемое над информацией — обработка информации. Обработка информации – это обдумывание, анализирование и видоизменение информации.

Примеры обработки информации:

  • поиск главы в оглавлении учебника;
  • поиск номера телефона в справочнике;
  • перевод текста с русского языкана французский язык;
  • заполнение журнала отметок;
  • выполнение вычислений по алгебре;
  • определение времени отправления поезда «Екатеринбург — Москва»;
  • определение маршрута движения из пункта А в пункт Б;
  • кодирование информации с помощью Азбуки Морзе;
  • построение диаграммы по данным из таблицы;
  • сканирование документа;
  • разгадывание ребуса и головоломки судоку;
  • архивирование файла;
  • разбор задачи по физике;
  • составление рецепта блюда;
  • редактирование изображения;
  • форматирование текста;
  • исправление ошибок в сочинении;
  • постановка врачом диагноза болезни.

16

Без обработки информации человек не смог бы выполнять множество задач. Когда человек стоит на регулируемом перекрестке, он оценивает данные, полученные от светофора. Человек обрабатывает эти сигналы и выдаёт телу сигнал к действию: «Стоять!» или «Двигаться!».

Выделяют два вида обработки информации:

Различают также осознанную и неосознанную обработку информации.

  1. Неосознанная обработка информации человеком. Однажды, дотронувшись до горячего утюга, человек получил осязательную информацию. На основе полученного опыта сделал вывод об опасности и в будущем избегает ее.

Осознанная обработка информации. Студент на лекциях изучил правила, формулы и алгоритмы решения и при выполнении домашнего задания пользуется этими знаниями.

17

Как называется устройство обработки информации?

Исполнителем может быть не только человек, но и специальное устройство. Компьютер-отличное средство обработки информации, позволяющее решать универсальные задачи. Использование компьютерной техники говорит об автоматизированной обработке информации. Благодаря мощности процессора и объему оперативной памяти можно обрабатывать большие объемы данных в короткие сроки.

Сверхбыстродействующий инструмент, суперкомпьютер, обладает производительностью свыше 100 МФЛОПС (МФЛОПС – сто миллионов операций в секунду).

18

Технология обработки информации включает знания об инструментах и средствах, которые способны изменять объекты (данные, изображение, видео и др.).

Технологический процесс обработки информации включает:

  • сбор и форматирование данных;
  • фильтрацию и сортировку;
  • архивацию данных;
  • защиту данных;
  • транспортировку данных.

Методы обработки информации:

  1. Логические: метод сравнения, разработка системы показателей, построение таблиц и графиков, метод экспертных оценок, эвристические методы.
  2. Математические: метод группировки, метод вычислений, линейное и нелинейное программирование, метод построения дерева решений, метод анализа.

Что такое систематизация информации?

Систематизация информации – это обработка информации, которая приводит к определенному виду: план, список, таблица, диаграмма или схема. Систематизировать можно товары в магазине игрушек, список учеников в классе, адреса друзей в адресной книге и др.

Microsoft Excel–одна из программ для систематизации информации. Она позволяет структурировать информацию, осуществлять сортировку и фильтрацию, проводить вычисления по формулам, строить графики.

Сортировка может осуществляться по алфавиту, в хронологической последовательности, по номерам (в порядке возрастания или убывания), по дате и времени.

Источник: 100urokov.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru