Информатика 23 задание егэ программа

Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х2) → (х3→ х4) = 1

(х3 → х4) → (х5 → х6) = 1

(х5 → х6) → (х7 → х8) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

Задание 23 | ЕГЭ по информатике | ДЕМО-2023

Т.е. условия выполняются для 5 наборов y1-y4.

Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

Читайте также:
С помощью какой комбинации клавиш можно переключаться между окнами открытых программ

Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

Кол-во наборов на x1…x8

Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

Сколько существует различных наборов значений логических переменных x1, x2, . x9, y1, y2, . y9, которые удовлетворяют всем перечисленным ниже условиям?

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, . x9, y1, y2, . y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

Систему можно записать в виде одного уравнения:

(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

z1 z2 z3 z4 z5 z6 z7 z8 z9
1 1 1 1
1 1 1 1 1

Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 — два набора (xi,yi): (0,0) и (1,1).

Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

Решение систем логических уравнений методом визуального определения рекурсии.

Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

где x1, x2, … x10 — ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Читайте также:
Как отправить программу 1с по электронной почте

Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

Для x1=0 существуют два значения x2 ( 0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 ( 0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

Ni+1 = Ni + 1. Тогда для десяти переменных получим 11 наборов.

Решение систем логических уравнений различного типа

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, . x4, y1. y4, z1. z4, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, . x4, y1, . y4, z1, . z4, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):

Источник: ege-study.ru

Задание 23 ЕГЭ по информатике

Сборник необходимой теории и практики к заданию №23 ЕГЭ 2023 по информатике «Динамическое программирование».

  • Вся теория по информатике для ЕГЭ
  • Тренировочные варианты ЕГЭ по информатике

Формулировка задания №23 ЕГЭ 2023 из демоверсии ФИПИ

Исполнитель преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:

Читайте также:
Вредоносные программы для эвм это

Программа для исполнителя – это последовательность команд.

Сколько существует программ, для которых при исходном числе 1 результатом является число 35, при этом траектория вычислений содержит число 10 и не содержит 17?

Траектория вычислений программы – это последовательность результатов выполнения всех команд программы. Например, для программы 121 при исходном числе 7 траектория будет состоять из чисел 8, 16, 17.

Самое необходимое по заданию №23 в формате видеоурока

Ниже представлены замечательные материалы, подготовленные Поляковым Константином Юрьевичем, доктором технических наук. В них вы найдёте всё самое полезное для себя — теория, решения заданий и практика.

Источник: ctege.info

Разбор задания №23 ЕГЭ-2019 по информатике и ИКТ

Предлагаем вашему вниманию разбор задания №23 ЕГЭ 2019 года по информатике и ИКТ. Этот материал содержит пояснения и подробный алгоритм решения, а также рекомендации по использованию справочников и пособий, которые могут понадобиться при подготовке к ЕГЭ.

26 марта 2019
Поделитесь в соц.сетях

 ЕГЭ-2020. Информатика. Тематические тренировочные задания

ЕГЭ-2020. Информатика. Тематические тренировочные задания

Пособие содержит задания, максимально приближенные к реальным, используемым на ЕГЭ, но распределенные по темам в порядке их изучения в 10-11-х классах старшей школы. Работая с книгой, можно последовательно отработать каждую тему, устранить пробелы в знаниях, а также систематизировать изучаемый материал. Такая структура книги поможет эффективнее подготовиться к ЕГЭ.

Демоверсия КИМ ЕГЭ-2019 по информатике не претерпела никаких изменений по своей структуре по сравнению с 2018 годом. Это значимо упрощает работу педагога и, конечно, уже выстроенный (хочется на это рассчитывать) план подготовки к экзамену обучающегося.

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru