Прежде чем приступить к написанию программ, необходимо изучить структуру программ на языке программирования С++. Своими словами, структура программ это разметка рабочей области (области кода) с целью чёткого определения основных блоков программ и синтаксиса. Структура программ несколько отличается в зависимости от среды программирования. Мы ориентируемся на IDE Microsoft Visual Studio, и по этому примеры программ будут показаны именно для MVS. Если вы используете другую IDE, то вам не составит труда перенести код из MVS в другие среды разработки, и вы поймете со временем, как это сделать.
Структура программ для Microsoft Visual Studio.
// struct_program.cpp: определяет точку входа для консольного приложения. #include «stdafx.h» //здесь подключаем все необходимые препроцессорные директивы int main() < // начало главной функции с именем main //здесь будет находится ваш программный код >
В строке 1 говорится о точке входа для консольного приложения, это значит, что данную программу можно запустить через командную строку Windows указав имя программы, к примеру, такое struct_program.cpp . Строка 1 является однострочным комментарием, так как начинается с символов // , подробнее о комментариях будет рассказано в следующей статье. В строке 2 подключен заголовочный файл «stdafx.h» . Данный файл похож на контейнер, так как в нем подключены основные препроцессорные директивы (те, что подключил компилятор, при создании консольного приложения), тут же могут быть подключены и вспомогательные (подключенные программистом).
Основы программирования: структура программ
include — директива препроцессора, т. е. сообщение препроцессору. Строки, начинающиеся с символа # обрабатываются препроцессором до компиляции программы.
Препроцессорные директивы также можно подключать и в строках, начиная после записи #include «stdafx.h» до начала главной функции. Причём такой способ подключения библиотек является основным, а использование «stdafx.h» — это дополнительная возможность подключения заголовочных файлов, которая есть только в MVS. С 4-й по 6-ю строки объявлена функция main . Строка 4 – это заголовок функции, который состоит из типа возвращаемых данных (в данном случае int ), этой функцией, и имени функции, а также круглых скобок, в которых объявляются параметры функции.
int — целочисленный тип данных
Между фигурными скобочками размещается основной программный код, называемый еще телом функции. Это самая простая структура программы. Данная структура написана в Microsoft Visual Studio. Все выше сказанное остается справедливым и для других компиляторов, кроме строки 2. Контейнера «stdafx.h» нигде кроме MVS нет.
Структура программы для C++ Builder.
При создании консольного приложения мастер создания проектов создает автоматически следующий код:
//препроцессорная директива, автоматически подключённая мастером создания проектов #include int main()
Урок №8. Структура программ
Компьютерная программа — это последовательность инструкций, которые сообщают компьютеру, что ему нужно сделать.
Структура и порядок выполнения программы. #Include. using namespace. C++ для начинающих. Урок #2.
Стейтменты
Cтейтмент (англ. «statement» ) — это наиболее распространенный тип инструкций в программах. Это и есть та самая инструкция, наименьшая независимая единица в языке С++. Стейтмент в программировании — это то же самое, что и «предложение» в русском языке. Мы пишем предложения, чтобы выразить какую-то идею.
В языке C++ мы пишем стейтменты, чтобы выполнить какое-то задание. Все стейтменты в языке C++ заканчиваются точкой с запятой.
Есть много разных видов стейтментов в языке C++. Рассмотрим самые распространенные из них:
int х — это стейтмент объявления (англ. «statement declaration» ). Он сообщает компилятору, что х является переменной. В программировании каждая переменная занимает определенное число адресуемых ячеек в памяти в зависимости от её типа. Минимальная адресуемая ячейка — байт. Переменная типа int может занимать до 4-х байт, т.е. до 4-х адресуемых ячеек памяти.
Все переменные в программе должны быть объявлены, прежде чем использованы. Мы детально поговорим о переменных на следующих уроках.
х = 5 — это стейтмент присваивания (англ. «assignment statement» ). Здесь мы присваиваем значение 5 переменной х .
Выражения
Компилятор также способен обрабатывать выражения. Выражение (англ. «expression» ) — это математический объект, который создается (составляется) для проведения вычислений и нахождения соответствующего результата. Например, в математике выражение 2 + 3 имеет значение 5 . Выражения в языке С++ могут содержать :
отдельные цифры и числа (например, 2 , 45 );
буквенные переменные (например, х , у );
операторы, в т.ч. математические (например, + , — );
Выражения могут состоять как из единичных символов — цифр или букв (например, 2 или х ), так и из различных комбинаций этих символов с операторами (например, 2 + 3 , 2 + х , х + у или (2 + х) * (y — 3) ). Для наглядности разберем простой корректный стейтмент присваивания х = 2 + 3; . Здесь мы вычисляем результат сложения чисел 2 + 3 , который затем присваиваем переменной х .
Функции
В языке C++ стейтменты объединяются в блоки — функции. Функция — это последовательность стейтментов. Каждая программа, написанная на языке C++, должна содержать главную функцию main() . Именно с первого стейтмента, находящегося в функции main(), и начинается выполнение всей программы. Функции, как правило, выполняют конкретное задание. Например, функция max() может содержать стейтменты, которые определяют большее из заданных чисел, а функция calculateGrade() может вычислять среднюю оценку студента по какой-либо дисциплине.
Совет: Всегда размещайте функцию main() в файле .cpp с именем, совпадающим с именем проекта. Например, если вы пишете программу Chess, то поместите вашу функцию main() в файл chess.cpp.
Библиотеки
Библиотека — это набор скомпилированного кода (например, функций), который был «упакован» для повторного использования в других программах. С помощью библиотек можно расширить возможности программ. Например, если вы пишете игру, то вам придется подключать библиотеки звука или графики (если вы самостоятельно не хотите их создавать).
Язык C++ не такой уж и большой, как вы могли бы подумать. Тем не менее, он идет в комплекте со Стандартной библиотекой С++ , которая предоставляет дополнительный функционал. Одной из наиболее часто используемых частей Стандартной библиотеки C++ является библиотека iostream , которая позволяет выводить данные на экран и обрабатывать пользовательский ввод.
Пример простой программы
Теперь, когда у вас есть общее представление о том, что такое стейтменты, функции и библиотеки, давайте рассмотрим еще раз программу «Hello, world!»:
Строка №1: Специальный тип инструкции, который называется директивой препроцессора . Директивы препроцессора сообщают компилятору, что ему нужно выполнить определенное задание. В этом случае мы говорим компилятору, что хотели бы подключить содержимое заголовочного файла к нашей программе. Подключение заголовочного файла дает нам возможность использовать функционал библиотеки iostream, что, в свою очередь, позволяет выводить нам данные на экран.
Строка №2: Пустое пространство, которое игнорируется компилятором.
Строка №3: Объявление главной функции main().
Строки №4 и №7: Указываем компилятору область функции main(). Всё, что находится между открывающей фигурной скобкой в строке №4 и закрывающей фигурной скобкой в строке №7 — считается содержимым функции main().
Строка №5: Наш первый стейтмент (заканчивается точкой с запятой) — стейтмент вывода. std::cout — это специальный объект, используя который мы можем выводить данные на экран.
Строка №6: Оператор возврата return . Когда программа завершает свое выполнение, функция main() передает обратно в операционную систему значение, которое указывает на результат выполнения программы: успешно ли прошло выполнение программы или нет.
Если оператор return возвращает число 0 , то это значит, что всё хорошо! Ненулевые возвращаемые значения указывают на то, что что-то пошло не так и выполнение программы было прервано. Об операторе return мы еще поговорим детально на соответствующем уроке.
Синтаксис и синтаксические ошибки
Как вы, должно быть, знаете, в русском языке все предложения подчиняются правилам грамматики. Например, каждое предложение должно заканчиваться точкой. Правила, которые регулируют построение предложений, называются синтаксисом . Если вы не поставили точку и записали два предложения подряд, то это является нарушением синтаксиса русского языка.
Язык C++ также имеет свой синтаксис: правила написания кода/программ. При компиляции вашей программы, компилятор отвечает за то, чтобы ваша программа соответствовала правилам синтаксиса языка C++. Если вы нарушили правила, то компилятор будет ругаться и выдаст вам ошибку.
Например, давайте посмотрим, что произойдет, если мы не укажем в конце стейтмента точку с запятой:
E0065: требуется точка с запятой «;»
C2143: синтаксическая ошибка: отсутствие «;» перед «>»
Допущена синтаксическая ошибка в строке №6: мы забыли указать точку с запятой перед оператором return. В этом случае ошибка на самом деле в конце строки №5. В большинстве случаев компилятор правильно определяет строку с ошибкой, но есть ситуации, когда ошибка не заметна вплоть до начала следующей строки.
Синтаксические ошибки нередко совершаются при написании программ. К счастью, большинство из них можно легко найти и исправить. Но следует помнить, что программа может быть полностью скомпилирована и выполнена только при отсутствии ошибок.
Тест
Теперь давайте проверим то, как вы усвоили материал текущего урока. Ответьте на следующие вопросы:
В чём разница между стейтментом и выражением?
В чём разница между функцией и библиотекой?
Чем заканчиваются стейтменты в языке С++?
Что такое синтаксическая ошибка?
Ответы:
Ответ №1
Стейтмент — это «полное предложение», которое сообщает компилятору, что ему нужно выполнить определенное задание. Выражение всегда имеет результат (исключение — деление на ноль) и является частью стейтмента.
Функция — это последовательность стейтментов для выполнения определенного задания. Библиотека — это последовательность функций, которые могут повторно использоваться в других программах.
Точкой с запятой (; ).
Синтаксическая ошибка — это ошибка, указывающая на нарушение правил грамматики языка С++.
Источник: dzen.ru
Структурная схема программы и средства для ее изменения
В понятие структуры программы (program structure) включается состав и описание связей всех модулей, которые реализуют самостоятельные функции программы и описание носителей вводимых и выводимых данных, а также данных, участвующих в обмене между отдельными подпрограммами.
Для разработки больших и сложных программ программисту необходимо овладеть специальными приемами получения рациональной структуры программы, которая обеспечивает почти двукратное сокращение объема программирования и многократное сокращение
Подчиненность модулей программы отражается в схеме иерархии. Однако последняя не отражает порядок их вызова или функционирование программы. Схема иерархии может иметь вид, показанный на рис. 5. Она, обычно, дополняется расшифровкой функций, выполняемой модулями.
Перед составлением схемы иерархии целесообразно составить внешние спецификации программы и составить функциональные описания программы вместе с описанием переменных-носителей данных. Особое внимание следует уделять иерархии типов структурированных данных и их комментированию.
Расчленение программы на подпрограммы производится по принципу от общего к частному, более детальному. Процесс составления функционального описания и составления схемы иерархии является итерационным, а выбор наилучшего варианта является многокритериальным. Расчленение должно обеспечивать удобный порядок ввода частей в эксплуатацию.
Схеме иерархии можно придать любой топологический рисунок. Фрагменты с вертикальными вызовами могут быть преобразованы в вызовы одного уровня посредством введения дополнительного модуля, который может не выполнять никаких полезных функций с точки зрения алгоритма программы. Функция нового модуля может состоять лишь в мониторинге, то есть вызове других модулей в определенном порядке.
Фрагменты с горизонтальными вызовами на одном уровне могут быть преобразованы в вертикальные вызовы модулей разных уровней посредством введения дополнительных переменных, которые не могли быть получены декомпозицией функционального описания на подфункции. Эти дополнительные переменные обычно имеют тип целый или логический и называются флагами, семафорами, ключами событий. Их смысл обычно характеризуется фразой: в зависимости от следующей предыстории действий, выполнить такие-то действия.
В процессе проектирования нужно сделать несколько проектных итераций, каждый раз генерируя новую схему иерархии, и сравнить эти иерархии по данным критериям для отбора лучшего варианта.
Ключ — значение переменной, используемое для подтверждения полномочий на доступ к некоторой информации или подпрограмме.
Флаг — переменная, значение которой свидетельствует о том, что некоторый аппаратный или программный компонент находится в определенном состоянии или что для него выполняется определенное условие. Флаг используется для реализации условного ветвления и прочих процессов принятия решений.
Семафор — тип данных специального назначения, который является средством управления доступом к критическому ресурсу со стороны совместно идущих последовательных процессов.
Над семафором можно производить только две операции (не считая создания и аннулирования): операцию ожидания (занятия) и операцию сигнализации (освобождения). Семафор принимает целое значение, которое не может быть отрицательным. Операция ожидания уменьшает значение семафора на единицу, когда это можно сделать, не получая при этом отрицательного значения, и это означает, что свободный ресурс используется. Операция сигнализации увеличивает значение семафора на единицу, что означает освобождение ресурса.
Критический ресурс — ресурс, который в каждый момент времени используется не более чем одним процессом. Когда требуется, чтобы несколько асинхронных процессов координировали свой доступ к критическому ресурсу, используется управляемый доступ через семафор.
КРИТЕРИИ ОЦЕНКИ КАЧЕСТВА
СТРУКТУРНОЙ СХЕМЫ ПРОГРАММЫ
Первый вариант структурной схемы, полученный путем простого членения функций программы на подфункции с указанием переменных, необходимых для размещения данных, чаще всего не является оптимальным и требуются проектные итерации для улучшения топологии схемы. Эти действия обычно выполняются методом «проб и ошибок». Каждый новый вариант сравнивается с предшествующим по описанным ниже критериям:
1) полнота выполнения специфицированных функций;
2)возможность быстрого и дешевого пополнения новыми, ранее не специфицированными функциями;
3)обозримость (понятность) для проектировщика составных частей программы;
4)максимальная независимость отдельных частей программы;
5) возможность связывания подпрограмм редактором связей;
6)достаточность оперативной памяти;
7) влияние топологии схемы иерархии на скорость выполнения программы при использовании динамической загрузки программы и механизма подкачки страниц;
8) отсутствие разных модулей со сходными функциями. Один и тот же модуль должен вызываться на разных уровнях схемы иерархии;
9)достижение такого графика работы коллектива программистов при реализации программы, который обеспечивает равномерную загрузку коллектива;
10)всемерное сокращение затрат на тестирование программы.
Хорошая схема иерархии в 2-5 раз сокращает затраты на тестирование по сравнению с первоначальным вариантом;
11)использование в данном проекте как можно большего числа проработанных в предшествующих проектах модулей и библиотек при минимальном объеме изготавливаемых заново частей.
Генерация вариантов прекращается при невозможности дальнейших улучшений. Рациональная структура программы обеспечивает сокращение общего объема текстов в 2-3 раза, что соответственно удешевляет создание программы и ее тестирование, на которое обычно приходится не менее 60% от общих затрат. При этом облегчается и снижается стоимость сопровождения программы.
МОДУЛЬНОЕ ПРОГРАММИРОВАНИЕ
Реализация принципа структурного программирования осуществляется с использованием макрокоманд и механизмов вызова подпрограмм. Эти же механизмы подходят и для реализации модульного программирования, которое можно рассматривать как часть структурного подхода.
Необходимо различать использование слова модуль, когда имеется в виду единица дробления большой программы на отдельные блоки (которые могут быть реализованы в виде процедур и функций) и когда имеется ввиду синтаксическая конструкция языков программирования (unit в Object Pascal).
Модульное программирование — это организация программы как совокупности независимых блоков, называемых модулями, структура и поведение которых подчиняются определенным правилам.
Концепцию модульного программирования можно сформулировать в виде нескольких понятий и положений:
1) большие задачи разбиваются на ряд более мелких, функционально самостоятельных подзадач — модулей, которые связаны между собой только по входным и выходным данным;
2) модуль представляет собой «черный ящик» с одним входом и одним выходом. Это позволяет безболезненно производить модернизацию программы в процессе ее эксплуатации, облегчает ее
сопровождение, а также позволяет разрабатывать части программодного проекта на разных языках программирования;
3) в каждом модуле должны осуществляться ясные задачи. Если назначение модуля непонятно, то это означает, что декомпозиция на модули была проведена недостаточно качественно. Процесс декомпозиции нужно продолжать до тех пор, пока не будет ясного понимания назначения всех модулей и их оптимального сочетания;
4) исходный текст модуля должен иметь заголовок и интерфейсную часть, где отражаются назначение модуля и все его внешние связи;
5) в ходе разработки модулей программы следует предусматривать специальные блоки операций, учитывающие реакцию на возможные ошибки в данных или в действиях пользователя.
Большое значение в концепции модульного программирования придается организации управляющих и информационных связей между модулями программы, совместно решающими одну или несколько больших задач.
При работе с модулями нужно помнить их основное отличие от процедур и функций. Традиционные правила сферы действия глобальных и локальных переменных для модулей не работают. Эта языковая конструкция разработана так, чтобы исключить влияние глобальных переменных, объявленных в главной программе, на внутренние описания модуля. Поэтому, если возникает необходимость ввести доступные для всех блоков программы глобальные описания то следует создать модуль глобальных объявлений и включить его в список импорта всех модулей, где нужны его описания.
3.7. СТРУКТУРА МОДУЛЯ В OBJECT PASCAL
Object Pascal имеет различные средства для структурирования программ. На нижнем уровне деления (для элементарных подзадач) чаще всего используются процедуры и функции, а на верхнем уровне (для больших задач) используются модули.
В среде Delphi каждой форме обязательно соответствует свой модуль, что позволяет локализовать все свойства окна в отдельной программной единице. Кроме этого, невизуальные алгоритмические действия также оформляются в виде отдельных модулей. Первая строка модуля начинается с ключевого слова:
Для правильной работы среды программирования это имя должно совпадать с именем дискового файла, в который помещается исходный текст модуля. Далее следует
где описывается взаимодействие данного модуля с другими пользовательскими и стандартными модулями, а также с главной программой.
Здесь содержатся объявления всех глобальных объектов модуля (типов, констант, переменных и подпрограмм), которые должны стать доступными основной программе и/или другим модулям. При объявлении глобальных подпрограмм в интерфейсной части указывается только их заголовок.
Связь модуля с другими модулями устанавливается специальным предложением:
В этом списке через запятые перечисляются идентификаторы модулей, информация интерфейсных частей которых должна быть доступна в данном модуле.
const type var
Список экспорта состоит из подразделов описания констант, типов, переменных, заголовков процедур и функций, которые определены в данном модуле, но использовать которые разрешено во всех других модулях и программах, включающих имя данного модуля в своей строке uses. Для процедур и функций здесь описываются только заголовки, но с обязательным полным описанием формальных параметров.
В этом разделе указывается реализационная (личная) часть описаний данного модуля, которая недоступна для других модулей и программ.
В этом списке через запятые перечисляются идентификаторы модулей, информация интерфейсных частей которых должна быть доступна в данном модуле. Здесь целесообразно описывать идентификаторы всех необходимых модулей, информация из которых не используется в описаниях раздела interface данного модуля.
label const type var
В этих подразделах описываются метки, константы, типы, переменные, процедуры и функции, которые описывают алгоритмические действия, выполняемые данным модулем, и которые являются «личной собственностью» исключительно только данного модуля. Эти описания недоступны ни одному другому модулю.
Исполняемая часть содержит описания подпрограмм, объявленных в интерфейсной части. Описанию подпрограммы должен предшествовать заголовок, в котором можно опускать список формальных параметров и тип результата для функции. Если заголовки указаны с параметрами, то их список должен быть идентичен такому же списку для соответствующей процедуры или функции в разделе interface.
В этом разделе между ключевыми словами initialization и finalization располагаются операторы начальных установок, необходимых для запуска корректной работы модуля. Эти операторы исполняются до передачи управления основной программе и обычно используются для подготовки ее работы. Операторы разделов инициализации модулей, используемых в программе, выполняются при начальном запуске программы в том же порядке, в каком идентификаторы модулей описаны в предложениях uses файла проекта. Если операторы инициализации не требуются, то зарезервированное слово initialization может быть опущено.
Раздел завершения finalization является необязательным и может присутствовать только вместе с разделом инициализации initialization. В разделе завершения располагается список операторов, которые будут выполняться при завершении модуля, что обычно происходит при окончании работы приложения. Разделы finalization модулей приложения выполняются в порядке, противоположном выполнению разделов initialization этих модулей.
Раздел завершения используется, как правило, для освобождения ресурсов, которые выделяются приложению в разделе инициализации. Это гарантирует корректное завершение приложения, что особенно это важно, когда приложение заканчивается по возникновению исключительных ситуаций.
Источник: cyberpedia.su