Криптографически надежный генератор случайных чисел (ГСЧ)
Самый надежный и красивый генератор случайных чисел. Идеально подойдет для прямого эфира в Инстаграм, Тик-Ток, Youtube!
Для чего нужен генератор случайных чисел
Администраторам групп в социальных сетях, работникам сферы развлечений, владельцам сайтов, ведущим каналов на видеохостинге YouTube и просто азартным людям будет полезен специализированный сервис по подбору независящих друг от друга цифр.
Онлайн-генератор чисел незаменим для:
- розыгрышей призов для подписчиков в группах соцсетей;
- жеребьевки участников соревнований;
- викторин на тематических ресурсах;
- азартных игр, гаданий.
Его часто применяют обычные интернет-пользователи для проверки собственной удачи, разрешения споров с друзьями, выбора номеров для игры в лотерею, создания паролей и ключей.
Как действует генератор случайных чисел
Lizaonair — удобный и очень простой в использовании сервис. Разобраться в его интерфейсе совсем несложно. Перед проведением сессии необходимо задать параметры в специальной форме, спрятанной под иконкой в виде шестеренки. Указать диапазон выбора значений и количество определяемых цифр.
Генератор случайных чисел. Как разыграть выйгрышные номера
На практике это выглядит так. Например, вам нужен генератор чисел для конкурса, в котором разыгрывается три приза между ста участниками. В левую графу формы следует внести цифру 3, в правую — 100. Затем нажать расположенный в центре значок из двух закольцованных стрелочек. Программа выдаст три цифры.
Зарегистрированным под этими номерами участникам достанутся призы!
Несколько причин выбрать Lizaonair. com
Вам повезло — вы нашли честный и надежный генератор случайных чисел! Его владелец — известный блогер Lizaonair — гарантирует высокое качество работы системы. Оно обеспечивается за счет использования криптографического рандомизатора с повышенной битностью рандомизации. Это значит, что повлиять на результат или предугадать, какие именно цифры выдаст алгоритм, невозможно.
Наш генератор чисел можно использовать для конкурса, проводимого на любой из популярнейших платформ.
- видеохостинге YouTube;
- приложении для обмена фотографиями Instagram;
- соцсетях ВКонтакте и TikTok.
На сегодня с помощью Lizaonair.com проводится множество интернет-конкурсов по принципу giveaway (победитель определяется случайным образом). Это очень популярный и эффективный способ завоевания интереса и доверия целевой аудитории.
Онлайн-генератор чисел подходит для самых разных проектов и замыслов. Вы можете использовать его для реализации своих идей абсолютно бесплатно!
Источник: lizaonair.com
Создавая непредсказуемость. Примеры использования генераторов случайных чисел
Генератор случайных чисел и сила намерения
Привет, Хаброжители! У нас вовсю продолжается распродажа «Старый Новый год».
Кто пытается арифметическими методами генерировать случайные числа, тот, конечно, живет во грехе. Поскольку, как указывалось уже неоднократно, нет такого феномена, как случайное число — есть только методы для получения случайных чисел.
– Джон фон Нейман
Генераторы случайных чисел (ГСЧ) – важнейшая составляющая разнообразных процессов, связанных с компьютерными программами, таких как криптография, моделирование, машинное обучение, игры, программирование, азартные игры, научные исследования – список можно продолжать. Но может возникнуть вопрос: как именно получить по-настоящему случайное значение, и почему это важно?
Оказывается, спонтанность — не самая сильная сторона компьютеров. Они
могут выполнять только те действия, на которые запрограммированы. Благодаря
ГСЧ, компьютеры приобретают способность генерировать уникальные неравномерно
распределенные числа. Иными словами, ГСЧ помогает компьютеру моделировать
непредсказуемость.
Два типа генераторов случайных чисел
Генераторы случайных чисел бывают двух разных типов: генераторы истинно случайных чисел (ГИСЧ) и генераторы псевдослучайных чисел (ГПСЧ) [1]. ГИСЧ считаются «истинными», так как используют в качестве источника энтропии внешний источник, расположенный за пределами компьютерной программы – например, погоду, атмосферные помехи или промежутки времени, в течение которых вы удерживаете клавиши на клавиатуре вашего компьютера.
Более строгие научные методы связаны с измерением радиоактивного распада атома [2]. Согласно квантовой теории, невозможно узнать наверняка, когда произойдет акт деления ядра, так что это, в сущности, «чистая случайность». Генерация истинно случайных чисел – это по-настоящему захватывающая тема, и мы посвятили ей целую статью, которая находится здесь.
ГИСЧ отлично подходят для создания подлинно случайных чисел, но работа таких генераторов зачастую отличается высокой вычислительной сложностью и не масштабируется, поскольку они зависят от внешних источников данных и от сенсоров.
Генераторы псевдослучайных чисел
Кажется, что ГПСЧ генерируют случайные числа, но на самом деле это только кажется [3]. Они сравнительно широко используются благодаря своей скорости и воспроизводимости результатов, поэтому они очень хорошо подходят для применения при моделировании и в играх. В сущности, ГПСЧ – это алгоритмы, использующие математические формулы или просто предвычисленные таблицы для выдачи последовательностей чисел [4]. Возьмем, к примеру, линейный конгруэнтный генератор (ЛКГ). В его составе используется начальное значение, множитель, инкремент и модуль.
Рано или поздно, после некоторого количества попыток, последовательности начнут повторяться. Эта величина называется «период» и является мерой количества уникальных чисел в последовательности. ЛКГ не используются при шифровании, поскольку не обеспечивают достаточно надежной случайности. У них короткие периоды, а их паттерны равномерны.
В основе большинства ГПСЧ для шифрования лежит Вихрь Мерсенна. Этот генератор псевдослучайных чисел был разработан в 1997 году Макото Мацумото и Такудзи Нисимура и в настоящее время является наиболее распространенным неспециализированным ГПСЧ [5]. Назван он так потому, что имеет период 2¹⁹⁹³⁷− 1, такова длина простого числа Мерсенна.
Вихрь Мерсенна по умолчанию используется во многих программных системах, в частности, в Microsoft Excel, MATLAB, Free Pascal, PHP, Python, R, Ruby и C++. Также он обычен в играх. К нему прибегают во многих системах, так как он позволяет быстро генерировать высококачественные псевдослучайные числа.
Способы использования игр
По мере того, как компьютерные игры становятся все реалистичнее, растет потребность и в более качественных генераторах случайных чисел. Сейчас ГПСЧ используются для создания геймплея, графики и обеспечения многих аспектов разработки игр. Когда ваш персонаж бьет противника, в игре требуется случайное число, чтобы аппроксимировать разброс нанесенного ущерба. В игре с ультрареалистичной графикой ГСЧ делегируется имитация отражений света, чтобы не перенапрягать процессор. В Minecraft случайное начальное значение используется для процедурной генерации мира вокруг вашего персонажа.
Игры такого типа, основанные на так называемой «процедурной генерации», в последние годы приобрели большую популярность. Причина проста: в них не приходится все делать вручную. Процедурный генератор – это система, использующая ГСЧ для создания целого мира по чисто случайному принципу [6]. В случае с “No Man’s Sky” в игре генерируется целая Вселенная.
Процедурная генерация позволяет очень сильно экономить память, в то же время создавая почти неограниченное количество игровых локаций и персонажей. Без ГСЧ сделать это было бы просто невозможно, поскольку слишком сильно затрачивались бы ресурсы, и на большинстве устройств игра бы подвисала.
Конечно, здесь есть и недостатки. Для генерации каждой планеты в “No Man’s Sky” используется 64-разрядное начальное значение. Это число скармливается генератору биомов для создания ландшафта и других разнообразных атрибутов планеты. Но 64-разрядного числа в данном случае недостаточно, поэтому планеты не отличаются существенным разнообразием.
Порождающая последовательность запускается в игре всякий раз, когда вы входите в новую звездную систему [7]. Сначала вы видите большие разнообразные планеты с голубыми океанами и пышными зелеными лесами. Как только вы приступаете к исследованию планет, начинают вырисовываться различные варианты окружающей среды. Избыточные ландшафты и животные равномерно распределяются по поверхности планеты, и закономерности становятся очевидными.
С технической точки зрения, эти планеты получаются методом генерации случайных чисел, но ни одна из них не оставляет по-настоящему уникального впечатления. Игра может справляться только с небольшой вариативностью окружающей среды, отчасти из-за ограничений того ГПСЧ, который в ней используется.
Чтобы справиться с такой дилеммой, нужен генератор случайных чисел с более длинным случайным значением. Если увеличить длину начального значения, получим больше переменных, но одного лишь этого будет мало. Один из атрибутов случайности заключается и в дисперсии чисел. Вы не хотите, чтобы одно и то же число попалось вам двенадцать раз подряд.
Случайность получается и из того, насколько неравномерно распределены последовательности чисел. Вот почему фактор случайности так важен в играх.
Равномерность распределения псевдослучайных чисел можно проверить при помощи симуляции по методу Монте-Карло [8]. Методы Монте-Карло – это тип алгоритмов, которые раз за разом делают случайную выборку для получения численного результата. Их основная идея – в решении задач методом подбора случайных значений.
Обычно они используются для оценки неизвестных соотношений и областей. На рисунке выше метод Монте-Карло применяется для оценки значения числа Пи. Чтобы методы Монте-Карло были эффективны, в них не обязательно требуются истинно случайные числа. Часто при помощи детерминированных псевдослучайных последовательностей оказывается просто тестировать и повторно прогонять симуляции [9]. Рассмотрим, например, как робот-пылесос Roomba ориентируется по плану комнат в доме.
Роботы-уборщики наподобие Roomba используют для навигации безмодельный фреймворк машинного обучения [10]. Таким образом, они учатся методом проб и ошибок: вы формулируете роботу, какую цель нужно достичь, но не предоставляете ему конкретного плана действий.
Tакой безмодельный фреймворк использует симуляцию по методу Монте-Карло, чтобы смоделировать планировку дома. Вместо того, чтобы просто покрывать всю возможную площадь дюйм за дюймом, он случайным образом выбирает точки, которые нужно найти, и так уточняет планировку. Входящие данные от сенсоров он использует, чтобы проверить, обошел ли уже весь пол. Закончив поиски, он возвращается в точку, которая соответствует началу координат.
Рандомизация домена (DR) – еще один способ использования случайности в машинном обучении. DR – это фреймворк машинного обучения, основанный на моделях. В нем применяется фиксированный набор правил, по которым учится ИИ [11]. Он используется в открытом проекте из области ИИ, связанном с моделированием ловкости рук.
Dactyl – это робот, обученный на множестве случайно подобранных симуляций, при помощи которых компьютер освоил естественные движения рук. Проект показал, что опыт обучения, заложенный в модель, составляет 100 лет. Машинное обучение такого рода было бы недостижимо, если бы учебные множества данных для него не генерировались при помощи ГСЧ.
Варианты использования в криптографии
Вы когда-нибудь задумывались, каковы механизмы шифрования в ваших полях с паролями и в браузере? Вы догадались: в основе цифрового шифрования лежат случайные числа [12]. Всякий раз, когда ваш браузер пытается обратиться за онлайновой информацией, она шифруется по методу SSL, что означает «слой защищенных сокетов».
Процесс начинается так:
- Сначала ваш браузер запрашивает идентификатор сервера.
- Затем веб-сервер направляет вашему браузеру в ответ на этот запрос SSL-сертификат.
- Браузер/сервер проверяют, можно ли доверять SSL-сертификату. Если можно, то на веб-сервер отправляется соответствующее сообщение.
- Веб-сервер отправляет обратно подтверждение, снабженное цифровой подписью и позволяющее начать сеанс, зашифрованный по технологии SSL.
- Зашифрованные данные совместно используются браузером/сервером с одной стороны и веб-сервером с другой стороны.
В принципе, именно так и происходит шифрование всех ваших данных, передаваемых онлайн.
История тайн
Использование фактора случайности для шифрования сообщений восходит ко временам древнего Рима. Римляне использовали шифр Цезаря, чтобы зашифровывать военные сообщения случайным ключом. В перемешивании для такого шифра использовалось всего 26 букв, поэтому вероятность взломать его составляла 1/26. Враг мог путем перебора попробовать все буквы латинского алфавита, и в таком случае на взлом кода ушло бы несколько часов, но к тому времени зашифрованные приказы уже были бы неактуальны.
По стандартам современной криптографии используется так называемая система одноразовых блокнотов. При использовании этого метода каждый символ в сообщении заменяется случайной буквой. Такой подход значительно снижает вероятность, что сообщение будет расшифровано. Допустим, вы хотите зашифровать имя “Alice”:
При рандомизации каждого символа в сообщении сложность его расшифровки возрастает экспоненциально. В случае с “Alice”, как в вышеприведенном примере, вероятность расшифровать это слово с первой попытки составляет около одного к 12 миллионам (26*26*26*26*26). Чем длиннее ключ, тем сильнее шифр.
Если вас интересует по-настоящему сложное шифрование, обратите внимание на SHA-256 [13]. SHA означает “Secure Hash Algorithm” (алгоритм криптографического хеширования). Он обычен в блокчейнах. Хеш-функция – это тип математической функции, преобразующей данные в отпечаток, именуемый «хеш-значением».
Хеш-алгоритм – это функция, принимающая входные данные и преобразующая их в вывод фиксированной длины. Хеш-функция однонаправленная. Невозможно обратить данные из ее хеша; можно пройти путь от входных данных до хеша, но не наоборот.
У SHA-256 2^256 возможных исходов. Это число невероятно велико. Если бы все компьютеры на планете были задействованы для расшифровки всех возможных сигнатур этого сообщения, то на эту работу потребовался бы срок, в 37 раз превышающий возраст Вселенной. SHA-256 – основа защиты большинства блокчейнов, а также стандартный метод шифрования в АНБ и ЦРУ. Это одна из причин, по которым с технологиями блокчейна связаны такие большие ожидания.
Заключение
Истинная случайность непредсказуема, и ее сложно сгенерировать в компьютерных системах. В мире математики, где повсюду используются записанные данные и формулы для прогнозов, все сложнее найти что-то случайное. Но в этом и ценность. Люди, привыкшие искать паттерны, всегда будут ценить то, что не поддается предсказанию, особенно при защите приватности, которой сегодня уделяется такое внимание. Говорим ли мы о расчете при моделировании, о шифровании сообщений или о повышении фактора случайности в работе игровых автоматов, генераторы случайных чисел оказываются незаменимы в нашем обществе.
Источник: habr.com
Для чего нужен генератор случайных чисел и как он работает
В компьютерных системах есть такой процесс, который носит общее название «генератор случайных чисел». Получение случайных чисел нужно для самых различных задач — от компьютерных игр до обычных приложений. Например, чтобы показывать случайный рекламный блок на сайте, система как раз пользуется генератором случайного числа, чтобы отобразить рандомный баннер. В криптографии, чтобы сделать уникальный шифр или ключ, также используются случайные числа.
Генераторы бывают двух видов: аппаратные и программные. Самые крутые — аппаратные. Такой генератор представляет собой сложное устройство, которое использует самые различные способы получения рандомной цепочки. В большинстве случаях мы пользуемся программными методами.
Дело в том, что программные решения хоть и производят случайные числа, но они являются псевдослучайными. Причина проста — зная алгоритм построения чисел можно воспроизвести комбинацию. Данный способ не подходит для криптографии — ведь порядок, в теории, можно повторить. Поэтому важные системы используют аппаратные генераторы случайных чисел. Кстати, есть варианты устройств, которые подключаются к ПК по USB.
Как происходит аппаратная генерация случайных чисел? Способов много, рассмотрим несколько:
► Самый дорогой способ основан на радиоактивном распаде атомов. При распаде атомы излучают шум, из которого и берутся случайные биты. Распад каждого атома явление уникальное и не может быть предсказано. Только вот скоростью такой генератор похвастаться не может;
► Использование генерации дробового шума. Простыми словами — электрические цепи в процессе работы издают шум, который потом используют для получения случайных бит. Вместо электрических цепей можно использовать также оптопару и фотодатчиком снимать частоту, которую можно использовать для получение шума;
► Генерация с помощью триггеров внутри микросхем. При отключении питания от триггера, его последнее положение будет случайным, потому что зависит от быстродействия триггера. Микросхема построена так, что все триггеры не могут сработать одновременно;
► С помощью теплового шума от резистора при нагреве;
► С помощью атмосферного шума земли, который можно услышать с помощью радиоприемного устройства;
► Могут быть использованы различные аналого-цифровые преобразователи.
Но такие способы, как правило, очень дорогие и медленные.
В обычном ПК для достижения более менее непредсказуемой цепочки случайных чисел может быть использована клавиатура или мышь. Например, когда генерируешь ключ доступа для сервера через Putty, система просит водить курсором мыши по пустому полю:
Это нужно, чтобы добавить случайности в полученный результат. Также может быть использована клавиатура, фоновый шум с микрофона или даже измерение времени пакетов, которые приходят через подключение к Wi-Fi роутеру. Но эти способы генерации все равно относят к псевдослучайным программным методам.
Источник: dzen.ru