Что такое программа питон и для чего она нужна

Содержание

Python сейчас везде. Все его любят, хвалят и рекомендуют как первый язык программирования. Откуда такой ажиотаж и стоит ли вам тоже учиться этому языку? Разберёмся.

1. Чистый и понятный синтаксис

Первое, что отмечает большинство разработчиков, когда начинаются разговоры про Python — безупречный и аккуратный код. Чтобы оформить любой логический блок — например, содержимое функции — просто используют отступы и пробелы. Не нужно проверять, не потерялась ли по пути лишняя скобка — всё видно сразу. Одна команда занимает одну строку, поэтому разделители команд тоже не нужны.

Посмотрите, как изящно выглядит такой синтаксис:

a=0 print(‘Введите число: ‘) input(a) if a==0: print(‘Вы ввели ноль’) else: print(‘Вы однозначно ввели не ноль’)

2. Простота программирования

Встроенные средства языка берут на себя большинство типовых задач. Сравните код на Python и на Java , который открывает файл и сохраняет в переменную его содержимое.

import java.io.IOException; import java.nio.file.Files; import java.nio.file.Paths; public static void main(String[] args) throws IOException
file = open(‘file.txt’) content = file.read()

3. Классные библиотеки

В какой бы области вы ни делали проект, скорее всего, для этого уже есть готовая Python -библиотека.

Что такое Python и почему вы захотите его изучить?

Обработка изображений, математика, распознавание речи — для всего есть инструменты.

Чтобы вы понимали, насколько это универсальный язык, посмотрите, для чего используют Python -фреймворки:

NumPy — машинное обучение и искусственный интеллект;

Django и Flask — веб-разработка и веб-приложения (например, Pinterest, YouTube и Instagram написаны на Django);

SQLAlchemy — базы данных и обработка больших объёмов информации;

Cocos2d — мобильные и браузерные игры;

Tornado — приложения, которые требуют высокой производительности и должны работать одновременно с сотней тысяч пользователей;

Bubot — программирование робототехники, как вариант — использование на Raspberry Pi.

4. Запускается везде

Python можно запустить практически на любой платформе — от КПК до серверов — и на любой операционной системе. Правда, есть естественные ограничения. Как только платформа полностью устаревает и перестаёт использоваться (например, Windows 95), прекращается её поддержка в новых версиях языка.

Более того, существует специальная версия Python для виртуальной машины Java — Jython . С её помощью можно выполнять код на любой системе, которая поддерживает Java (то есть на чём угодно, умнее утюга, но и на некоторых утюгах тоже).

5. Своя дзен-философия

Считается, что философию Python придумал Тим Петерс, и этой философии стараются придерживаться все, кто серьёзно относится к программированию на Python . Она описывает принципы, которые следует использовать каждому разработчику. Там есть такие прекрасные строки как «Красивое лучше, чем уродливое», «Читаемость имеет значение» и «Особые случаи не настолько особые, чтобы нарушать правила».

Чтобы вызвать полный текст The Zen of Python, используют команду import this .

С чего начать

Официальный сайт языка Python — там вся документация (на английском, если не знаете — пользуйтесь Яндекс-переводчиком), примеры кода и всё, что нужно знать про язык в целом.

На курсе Яндекс-практикума «Как стать аналитиком данных» можно изучить основы Python и получить новую профессию.

Книга Марка Лутца «Изучаем Python» идеальна для новичков: расписано всё, что нужно.

pythonworld.ru — русскоязычный ресурс, целиком посвящённый этому языку.

Любишь Python? Зарабатывай на нём!
Изучите самый модный язык программирования и станьте крутым бэкенд-разработчиком. Старт — бесплатно.

Любишь Python? Зарабатывай на нём! Любишь Python? Зарабатывай на нём! Любишь Python? Зарабатывай на нём! Любишь Python? Зарабатывай на нём!

Получите ИТ-профессию

В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.

Источник: thecode.media

Почему Python?

Python programming

С некоторого времени в голове крутилась мысль о том, а не написать ли мне небольшую заметку на тему почему язык программирования Python стоит изучать, и более того, создавать на нём программные проекты.

Некоторые из вас знают, что совсем недавно я посетил крупнейшее событие в сообществе Python программистов — PyCon US 2016. Полностью все расходы были покрыты мною самостоятельно без привлечения спонсоров и работодателей. Пожалуй, чтобы посетить такое мероприятие, нужно иметь некоторую эмоциональную привязанность к предмету, и это правда.

Что такое Python?

Python это язык программирования общего назначения, нацеленный в первую очередь наповышение продуктивности самого программиста, нежели кода, который он пишет. Говоря простым человеческим языком, на Python можно написать практически что угодно (веб-/настольные приложения, игры, скрипты по автоматизации, комплексные системы расчёта, системы управления жизнеобеспечением и многое многое другое) без ощутимых проблем. Более того, порог вхождения низкий, а код во многом лаконичный и понятный даже тому, кто никогда на нём не писал. За счёт простоты кода, дальнейшее сопровождение программ, написанных на Python, становится легче и приятнее по сравнению с Java или C++. А с точки зрения бизнеса это влечёт за собой сокращение расходов и увеличение производительности труда сотрудников.

Для демонстрации лаконичности рассмотрим код на Python и Java, который открывает файл и сохраняет его содержимое в переменную:

file = open(‘file.txt’) content = file.read()
import java.io.IOException; import java.nio.file.Files; import java.nio.file.Paths; public static void main(String[] args) throws IOException

Код на Java использует обновлённый интерфейс для работы с системой ввода-вывода. Старый способ выглядел бы ещё ужаснее 🙂

Кто использует Python?

Грош цена даже самому продвинутому языку программирования, если до него никому нет дела. Одним из составляющих успеха любой технологии является сообщество, созданное вокруг неё. Именно оно предопределяет будущий вектор развития путём совместных усилий. Сообщество вокруг Python одно из самых сильных в мире IT. Это сложный хорошо организованный и постоянно развивающийся организм. Помимо сотни тысяч индивидуальных разработчиков и небольших софтверных компаний, Python поддерживают такие гиганты IT как:

  • Google
  • Dropbox
  • Mozilla
  • Facebook
  • Yandex
  • Red Hat
  • Microsoft (с недавних пор очень активно, в частности с Visual Studio)
  • Intel (активно ведёт исследовательскую работу в области параллельных вычислений на Python)

. и многие многие другие. Впечатляет, не правда ли? Что же касается крупных и популярных проектов, написанных на Python то это такие монстры как:

  • YouTube (большая часть кодовой базы полностью на Python)
  • Первая версия поискового паука Google была написана на Python, а позже, из-за чрезвычайно высокой нагрузки и требований к скорости, была переписана на C++.
  • Десктопный клиент Dropbox
  • Reddit
  • Instagram (500M юзеров на Python)
  • Bitbucket (Python 2.7 и Django 1.7.11)
  • EVE Online MMOPG
  • Quora
  • Spotify
  • Критические сервисы PayPal, обрабатывающие до 2 миллиардов запросов в сутки. Подробнее можно узнать в подкасте от TalkPython, выпуск #54
  • Сервисы Mozilla
  • Популярный сервис идей Pinterest
  • Сервис комментариев Disqus (использую в этом блоге, сервис реализован на Django)
  • Внутренние сервисы Facebook (см. постер в моей заметке о PyCon)
  • Система контроля версий Mercurial (до некоторых пор разработчики Python использовали её в своей работе)
  • Сервисы Wargaming
Читайте также:
Mind master что это за программа

и я уверен ещё множество других интересных и популярных приложений, которые я забыл здесь перечислить (велком в комментарии).

О чём это может говорить? О многом. А самое главное о том, что крупные корпорации не боятся строить свой бизнес вокруг Python, они уверены в том, что технология будет жить, а следовательно проблем с поиском специалистов ждать не стоит. Более того, разнообразие приложений также радует, что свидетельствует о широком круге задач, которые Python решает мастерски.

В заметке про книгу «Структура и Интерпретация Компьютерных Программ», я писал о том, что она была взята за основу в качестве учебного материала для вводного курса по программированию в MIT, компьютерным языком на тот момент выступал диалект Lisp — Scheme. Времена меняются, сейчас в качестве цифрового lingua franca лидирует что. Правильно, Python. Именно его используют в качестве надёжного инструмента в столь удивительном ремесле.

Недостатки Python

Удивительный мир программирования

У читателя незнакомого с Python может сложиться впечатление, что он панацея от всех бед, серебряная пуля и лекарство от рака. Но не всё так радужно и прекрасно. Как и у всего, у Python есть ряд своих недостатков, которые порой могут быть критическими и влиять на выбор не в пользу змеи.

Скорость

Одним из главных недостатков является его относительно низкая скорость выполнения. Python является языком с полной динамической типизацией, автоматическим управлением памятью. Если на первый взгляд это может казаться преимуществом, то при разработке программ с повышенным требованием к эффективности, Python может значительно проигрывать по скорости своим статическим братьям (C/C++, Java, Go). Что касается динамических собратьев (PHP, Ruby, JavaScript), то здесь дела обстоят намного лучше, Python в большинстве случаев выполняет код быстрее за счет предварительной компиляции в байт-код и значительной части стандартной библиотеки, написанной на Си. На конференциях мне довелось пообщаться с ребятами из крупных компаний вроде Wargaming, у многих из них наблюдается тренд перехода в сторону статики, и чаще всего это Go, Rust.

Интересный доклад про скорость и оптимизацию CPython (родная реализация языка на Си) был прочитан на PiterPy 2015 в Санкт-Петербурге:

Динамическая типизация

Для начинающих программистов, язык программирования с динамической типизацией на первый взгляд (и на второй и даже на третий) может казаться отдушиной, райским наслаждением, особенно для тех, кто ранее имел дело со «статикой». Но есть и обратная сторона луны. С ростом кодовой базы (а это часто неизбежный процесс в успешных проектах), следить за типом передаваемых друг другу данных бывает очень сложно (а при отсутствии внятных доков и тестов практически невозможно), отсюда появляются проблемы, когда, например, у None пытаются вызвать метод или обратиться к атрибуту в процессе выполнения кода. Для решения такого рода проблем динамические языки обрастают всевозможными костылями, свистелками и перделками в виде type annotations, проектов mypy по статическому анализу кода и так далее. Это же в свою очередь накладывает негативный оттенок на эстетическую сторону кода.

В связи с ограничениями языка, появляются альтернативные реализации интерпретаторов: PyPy, Pyston, Jython, Cython и многие другие. Сейчас тренд хорошо заметен именно в эту сторону, например Pyston разрабатывается в стенах т.н. Мекки Python программистов — компании Dropbox 🙂

Заключение

Несмотря на ряд проблем исторически присущих Python, он продолжает оставаться лидирующим инструментом в ряде ниш:

  • Разработка веб-приложений (тут у нас бесусловный лидер в виде Django).
  • Анализ данных и машинное обучение (пакеты scipy, scikit-learn, pandas, numpy признанные мировым ученым сообществом).
  • Введение в программирование (pygame, turtle хорошо помогают мотивировать детей начинать кодить).
  • Быстрое прототипирование идей в бизнесе за счёт обилия готовых библиотек, низкого порога вхождения в язык и высокой продуктивности программистов, пишущих на Python.
  • Написание скриптов (сценариев) для автоматизации задач. Python по-умолчанию поставляется со всеми дистрибутивами unix-like систем и является отличной заменой Bash во всех смыслах.

Наверняка я ещё что-то забыл. В общем, Python рулит!

Ссылки

  • Отличный доклад про GIL (Global Interpreter Lock). GIL один из серьёзных «затыков» в Python на пути к параллельному программированию.
  • Доклад Гвидо ван Россума про type annotations на прошлогоднем PyCon US.
  • Raymond Hettinger на прошлогоднем PyCon прочитал отличный доклад на тему pythonic подхода к написанию кода, показав как трансформировать Java-like в Python-like код. Безусловный must watch.
  • Пост в техническом блоге Instagram о том как они справляются с нагрузками, используя Python и Django.
  • 10 Myths of Enterprise Python в блоге PayPal.
  • Поезда на PyCon 2016 в Портленд

Присоединяйтесь к рассылке

Понравился контент? Пожалуйста, подпишись на рассылку.

Источник: khashtamov.com

Разработка на Python — плюсы и минусы

История одного из самых популярных языков программирования началась в конце 80-х годов, когда Python начал своё концептуальное оформление на основе языков ABC и Modula-3. Он прошел долгий путь от своего первого релиза в 1991 году до версии 2.0, когда стал проектом с открытым исходным кодом. Python и по сей день объединяет огромное профессиональное сообщество, которое постоянно совершенствует эту технологию.

Согласно данным авторитетных индексов TIOBE и PYPL, сегодня Python стал самым популярным языком программирования в мире, опередив лидировавших ранее Java, C и C++. Работодатели по всему миру называют владение «Питоном» одним из самых востребованных и ценных технических навыков на рынке IT-разработки. Попробуем разобраться, почему же он завоевал столь высокие позиции.

В этом обзоре не будем останавливаться на том, что представляет собой язык Python и как он работает — это тема для отдельной статьи. Мы сосредоточимся на освещении целесообразности и эффективности применения «змеиного языка» для создания приложений. Для этого подробно разберем основные плюсы и минусы Python как языка разработки.

Кому нужен Python

Подходит ли Python для веб-разработки? Перед тем, как дать подробный ответ, стоит кинуть беглый взгляд на реальные примеры применения Python в технологических стеках гигантов современной индустрии.

Примеры использования Python крупными компаниями

  • Google — с момента появления языка компания взяла на вооружение лозунг «Python везде, где можем, а C ++ — где должны». Python не только является компонентом поискового движка, но и считается (наряду с C ++, Java и Go) одним из официальных серверных языков Google, приложения на которых разрешено развертывать в производственной среде.
  • Facebook — Python занимает третье место (после C++ и Hack) среди самых популярных языков разработки, которыми пользуются инженеры технологического гиганта. На нем сделано более 5 000 коммитов для утилит и инфраструктурных приложений Facebook.
  • Instagram — платформа социальных сетей целиком создана на базе Python-фреймворка Django. Она ежедневно даёт возможность 4 миллионам активных пользователей фотографировать, редактировать, делиться и сохранять свои творения в личном цифровом альбоме.
  • Spotify — крупный игрок на рынке и приложение для потоковой передачи музыки использует Python для аналитики данных. На её основе работают алгоритмы рекомендаций в популярнейших функциях «Радио» и «Открытия недели».
  • Netflix — стриминговый сервис высоко оценил возможности стандартной библиотеки Python, чрезвычайно активное сообщество разработчиков и богатый выбор сторонних библиотек, доступных для решения практически любой конкретной проблемы. В своем блоге компания отмечала, что использует Python на протяжении всего жизненного цикла контента — от принятия решения о финансировании проектов, до управления сетью CDN, предоставляющей видео конечным пользователям.
  • Dropbox — популярное онлайн-хранилище применяет Python для оптимизации кода как серверной части, так и внешнего интерфейса. Для этой задачи они привлекали самого создателя «змеиного языка» Гвидо ван Розума. А в 2016 году Dropbox выпустили Pyston — свою собственную реализацию Python, совместимую с CPython и библиотекой NumPy.
Читайте также:
Программа xsd что это

Язык широко применяется для комплексной разработки и тестирования веб-проектов любого масштаба. Однако, наряду с основными преимуществами, такими как простота и элегантность кода, имеется у Python и ряд своих недостатков.

Достоинства Python для разработки

Удобство и простота

  • Низкий порог вхождения. Синтаксис Python схож с английским языком, который стал международным стандартом общения для разработчиков по всему миру. Это упрощает взаимодействие со сложными системами, а также даёт чёткое представление о взаимосвязи всех элементов кода между собой. Изучение Python может стать базой для «быстрого старта» для большинства начинающих программистов.
  • Лёгкость чтения. Python невероятно легко читать, поэтому у программистов обычно не возникает проблем с пониманием кода, написанного их коллегами. Это делает общение между разработчиками в рамках одного проекта намного более эффективным. А наличие большое числа IDE для разработки веб-приложений на Python делает совместную работу еще проще.
  • Хорошая визуализация. Представление данных в интуитивно понятном формате в Python достигается с помощью различных графиков и диаграмм. Компании, занимающиеся веб-разработкой, используют библиотеки Python с возможностью визуализации данных (например, Matplotlib), чтобы создавать чёткие и простые для понимания неспециалистов отчеты.

Бесплатность и открытый исходный код

Лицензия Python с открытым исходным кодом делает его легкодоступным, облегчает распространение и создание модификаций. Разработчики со всего мира могут бесплатно использовать язык и вносить свой вклад в его улучшение. К тому же, в случае с Python сами пользователи, а не крупные компании решают, как будет развиваться технология.

Встраиваемость и платформонезависимость

Благодаря своей интерактивности и переносимости Python обладает хорошими возможностями для динамической семантики и быстрого прототипирования. Его можно легко встроить в широкий спектр приложений, даже в те, которые используют разные языки программирования. Поэтому с Python можно легко исправлять новые модули и расширять базовый словарный запас языка.

Python, как C++, Java и другие высокоуровневые языки программирования, может работать с разными типами компьютеров, ОС и баз данных практически без модификаций. Он хорошо интегрирован не только с популярными платформами Windows, Mac и Linux/UNIX, но и со встроенными системами, такими как Raspberry Pi и Gumstix. Программы на Python также позволяют реализовывать переносимые графические интерфейсы.

Динамическая типизация

Python не знает тип переменной, пока код не запустится. Он автоматически назначает тип данных во время выполнения. Программисту не нужно заранее беспокоиться об объявлении переменных и их типов данных.

Асинхронное программирование

Для написания и поддержки асинхронного кода Python не требуется много усилий, поскольку нет взаимных блокировок, конфликта данных или любых других сбивающих с толку проблем. Каждая единица такого кода выполняется отдельно от основного потока, что существенно повышает производительность и скорость отклика приложения.

Повышенная эффективность разработки

  • Гибкий подход. Python имеет несколько парадигм и может поддерживать множество стилей программирования, включая процедурные, объектно-ориентированные и функциональные. Это делает Python отличным языком для стартапов, поскольку им может потребоваться изменить свой подход в любой момент.
  • Быстрая разработка. Веб-разработка на Python происходит в 5-10 раз быстрее, чем на C/C++, и в 3-5 раз быстрее, чем на Java. Это делает труд программистов проще и продуктивнее. Скорость написания кода — еще одна причина, по которой Python часто выбирают стартапы. Ведь более быстрое время вывода продукта на рынок дает и большее конкурентное преимущество.
  • Упрощённая реализация ООП. Объектно-ориентированное программирование (ООП) — это парадигма, которая объединяет различные поведения и свойства в несколько объектов и классов. У каждого из этих классов есть своя функция, поэтому если в какой-то части кода возникает ошибка, другие части не затрагиваются. В Python работа ООП значительно упрощена, что делает разработку менее затратной и трудоемкой.
  • Богатая стандартная библиотека и экосистема. Библиотеки Python содержат огромное количество заранее написанного кода. Таким образом, разработчикам не нужно тратить время на создание основных элементов. Эти библиотеки также позволяют программистам обрабатывать и преобразовывать данные, необходимые для непрерывной обработки данных в машинном обучении (ML).

Интеграция с другими языками

Популярность использования Python для корпоративных программных приложений, во многом объясняется его плавной интеграции с другими языками, традиционно применяемыми в корпоративной разработке, такими как Java, PHP и .NET.

Python может легко соединять отдельные компоненты приложения, написанные на разных языках. Неудивительно, что его иногда называют «склеивающим языком» (glue language) или языком интеграции.

Python делает прямые вызовы из/в кода Java, C ++ или C. Это позволяет обеспечить контроль большинства процессов и реализацию наиболее распространенных протоколов и форматов данных. Кроме того, его можно применять для сборки новых и старых фрагментов инфраструктуры, что является типичной задачей при разработке сложных мобильных приложений.

Богатство фреймворков

Одним из главных преимуществ языка Python является наличие у него большого числа фреймворков, упрощающих процесс разработки. Большинство фреймворков Python имеют четкую специализацию, в зависимости от типа и масштаба выполняемых с их помощью задач.

  • Django отлично подходит для полноценных веб-приложений и масштабируемых проектов среднего уровня. Он имеет встроенные функции, которые позволяют повторно использовать код, согласованно изменять различные компоненты кода и упрощать веб-разработку другими способами. Django хорошо работает с Oracle SQL, PostgreSQL, MySQL и другими известными базами данных.
  • Pyramid подойдёт для небольших проектов, которые при необходимости можно масштабировать. Фреймворк может использоваться с различными базами данных и приложений, а его функциональность расширяться с помощью плагинов — разработчики могут добавлять любые нужные функции. Это удобно, когда требуется реализовать разные решения в одной задаче.
  • TurboGears состоит из нескольких компонентов, таких как Repoze, WebOb и Genshi, и основан на архитектуре MVC. Это хорошо для быстрой и эффективной разработки веб-приложений, которые к тому же более удобны в обслуживании. С помощью этой структуры можно писать небольшие или сложные приложения, используя режимы с минимальным или полным стеком соответственно.
  • Flask позиционируется как микрофреймворк. Чаще всего он применяется к небольшим решениям, основным приоритетом которых является бережливая функциональность. Фреймворк также используется для создания прототипов.
Читайте также:
Что за программа exon

Недостатки Python для разработки

Несмотря на явные достоинства Python, у него есть и недостатки, о которых следует помнить, планируя использовать этот язык в своем проекте.

Нет полной поддержки многопроцессорности

Многопроцессорность — важная часть написания приложения. Python поддерживает многопроцессорность, но из-за отсутствия прямой поддержки многопоточности (задачи выполняются параллельно в один поток), он может быть не таким гибким или удобным, как другие языки.

Это может создать определенные трудности при параллельном выполнении кода. Хотя подобные ограничения во многом снимается за счёт многочисленных дополнительных библиотек Python, умеющих полноценно работать с многопоточностью.

Ограничение скорости

Python часто критикуют за его скорость. Это интерпретируемый скриптовый язык, поэтому он работает относительно медленнее своих скомпилированных аналогов (например, C / C ++ или Java), которым не нужно тратить время на перевод текста программы. Тем не менее, некоторые тесты на Python работают быстрее, чем на C и C ++.

При этом, Python — не единственный, у кого есть потенциальные проблемы со скоростью. Ruby, Perl и даже JavaScript также находятся на более медленном конце «скоростной» шкалы. К тому же некоторые проблемы «змеиного языка», связанные со скоростью, были решены и оптимизированы, что делает Python одним из лучших вариантов для разработки программного обеспечения.

Не самый популярный язык для разработки мобильных приложений

Python неплохо справляется с мобильной разработкой, но его сравнительно редко используют для этой цели. Причина проста — у большинства компаний сложилась устойчивая практика нативной разработки для iOS и Android или разработки на React Native.

«Змеиный язык» не так популярен, как другие технологии в этой сфере. Более того, Android и iOS не поддерживают Python в качестве официального языка программирования. Поэтому заказчику будет сложно нанять исполнителей с опытом разработки мобильных приложений на Python.

Увеличенная нагрузка на память

Python — это язык, известный гибкостью подходов к типизации данных. Эта же динамическая типизация приводит к повышенному потреблению памяти. Поэтому Python будет неидеальным выбором для задач, интенсивно использующих память.

Нужно больше времени на тестирование

Python не требует, чтобы программисты определяли тип переменной, поскольку этот язык использует динамическую типизацию, которая упрощает и ускоряет написание кода.

К сожалению, это может привести к критическим ошибкам и дефектам, поскольку типы переменных не определены явно. Чтобы устранить эту проблему, разработчики должны запускать дополнительные тесты для выявления и исправления ошибок во время выполнения.

Архитектурные ограничения

Динамическая типизация Python накладывает некоторые ограничения и на архитектуру приложения. Ведь ряд процессов будут выполняться не на этапе компиляции (как в языках статической типизацией), а непосредственно во время выполнения. Если дизайн загружен элементами, это может остановить исполнение программы и помешать её бесперебойной работе.

Еще одна вещь, о которой нужно знать, рассматривая Python для своего проекта — конкурентность и параллелизм не могут быть элегантно использованы в этом языке. Из-за этого дизайн приложения может выглядеть не так изысканно, как хотелось бы.

Некоторым модулям Python не хватает надежной поддержки

Python выигрывает от большого и активного сообщества. Его члены часто обмениваются новыми пакетами и модулями, чтобы упростить разработку и расширить функциональные возможности языка.

К сожалению, многие разработчики указывают, что качество этих модулей не всегда на высоте. Некоторые из них устарели и не имеют надежной поддержки. Чтобы обеспечить хорошую производительность приложения на Python, следует проводить тщательное предварительное исследование, чтобы выбрать лучшие пакеты и модули.

Для чего еще нужен Python

Можно ли использовать Python для веб-разработки? Ответ очевиден. Ведь взвешенная оценка преимуществ и недостатков языка, показывает явное преобладание первых. Однако сфера применения Python выходят далеко за рамки непосредственного создания приложений.

Для проектов с машинным обучением и искусственным интеллектом

Технологии искусственного интеллекта (AI) и машинного обучения (ML) привлекают постоянно возрастающий интерес, поэтому все больше разработчиков пытаются включить их в свои проекты.

По словам Жана Франсуа Пьюже, представителя отдела машинного обучения IBM, Python — лучший язык для работы с машинным обучением и искусственным интеллектом. Для него создано много эффективных ML-инструментов с возможностью визуализации результатов, чьи возможность выходят далеко за рамки обычной обработки данных.

Для научных задач

Для «Питона» существует множество пакетов и библиотек, а также наборов инструментов (например, VTK 3D и MayaVi), специализированных для разработки научных и инженерных приложений. Среди наиболее популярных средств Data Science для Python можно выделить:

  • SciPy — библиотека для выполнения научных и математических вычислений;
  • Pandas — библиотека для аналитики данных;
  • IPython — командная оболочка;
  • Numeric Python (NumPy) — библиотека для фундаментальных математических вычислений;
  • Natural Language Toolkit — библиотека для математического и текстового анализа.

Для анализа и визуализации данных

Аналитика данных (DA) — флагманская область применения Python, наряду с машинным обучением и искусственным интеллектом. Этот многоцелевой язык программирования предлагает множество инструментов для управления, анализа, а также визуального представления (DV) структур и сложных наборов данных.

Благодаря легкой интеграции с популярными «статическими» языками (например, MatLab и R), а также наличию множества специализированных библиотек, на основе Python удобно создавать кастомные алгоритмы анализа данных. Из можно напрямую интегрировать в собственные инструменты бизнес-аналитики через API.

Для тестирования

Еще одна область применения Python — автоматизация тестирования. Многие специалисты по автоматизации QA выбирают Python из-за его простой кривой обучения. Он также отлично подходит для тех, у кого более ограниченный технический опыт. Процесс обучения сильно облегчают развитое сообщество, четкий синтаксис и удобочитаемость.

У Python даже есть простые в использовании фреймворки для модульного тестирования, с помощью которых можно, например, выполнять тестирование геолокации для мобильных приложений.

Для прототипирования

Python делает создание прототипов быстрым и простым. Гибкость языка программирования позволяет легко провести рефакторинг кода и оперативно превратить первоначальный прототип в конечный продукт.

Для скриптования

Благодаря тесной интеграции с C, C ++ и Java Python может пригодиться для написания скриптов приложений. Изначально разработанный для встраивания в программные продукты на других языках, он может быть очень полезен для настройки больших приложений и создания для них расширений.

Одним из преимуществ использования Python для создания серверных скриптов является его простой синтаксис, который значительно ускоряет процесс. Код состоит из функциональных модулей и связей между ними, что позволяет выполнять алгоритм программы на основе действий пользователя. Python также поддерживает графические пользовательские интерфейсы, необходимые для веб-разработки.

Заключение

Python позволяет разрабатывать понятные и простые приложения, которые легко превратить из небольшого проекта в полноценное сложное приложение. Независимо от того, являетесь ли вы программистом или владельцем своего бизнеса, Python может стать хорошим вариантом для разработки проектов разных типов.

Он признан одним из лучших языков программирования для стартапов и легко понять по какой причине. Стартапы постоянно ищут уверенности и снижения рисков, у них ограниченные ресурсы и им нужно пространство для роста. А Python гибок, легко масштабируется, не требует большой команды и может использоваться для создания прототипов и запуска минимально жизнеспособных продуктов (MVP).

Нужна надёжная база для разработки программных продуктов? Выбирайте виртуальные серверы от Eternalhost с технической поддержкой 24/7 и бесплатной защитой от DDoS!

Источник: eternalhost.net

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru