Что такое Операционная система это комплекс программ

Что такое операционная система это комплекс программ

Все многообразие программ, используемых на современном компьютере, называется программным обеспечением — ПО (software).

Программы, составляющие ПО, можно разделить на три группы: системное ПО, системы программирования, прикладное ПО. Ядром системного ПО является операционная система (ОС).

ОС — это неотъемлемая часть ПО, управляющая техническими средствами компьютера (hardware). Операционная система — это программа, координирующая действия вычислительной машины; под ее управлением осуществляется выполнение программ.

Основные функции операционной системы:

1.Обмен данными между компьютером и различными периферийными устройствами (терминалами, принтерами, гибкими дисками, жесткими дисками и т.д.). Такой обмен данными называется «ввод/вывод данных».

2.Обеспечение системы организации и хранения файлов.

3.Загрузка программ в память и обеспечение их выполнения.

4.Организация диалога с пользователем.

7. Что такое операционная система? | PCprostoTV

ОС – это комплекс взаимосвязанных системных программ, назначение которого – организовать взаимодействие пользователя с компьютером и выполнение всех других программ.

Состав операционной системы.

Структуру ОС составляют следующие модули:

базовый модуль (ядро ОС)- управляет работой программы и файловой системой, обеспечивает доступ к ней и обмен файлами между периферийными устройствами;

командный процессор — расшифровывает и исполняет команды пользователя, поступающие прежде всего через клавиатуру;

драйверы периферийных устройств — программно обеспечивают согласованность работы этих устройств с процессором (каждое периферийное устройство обрабатывает информацию по разному и в различном темпе);

дополнительные сервисные программы (утилиты) — делают удобным и многосторонним процесс общения пользователя с компьютером.

Загрузка ОС. Файлы, составляющие ОС, хранятся на диске, поэтому система называется дисковой операционной (ДОС). Известно, что для их выполнения программы — и, следовательно, файлы ОС — должны находится в оперативной памяти (ОЗУ). Однако, чтобы произвести запись ОС в ОЗУ, необходимо выполнить программу загрузку, которой сразу после включения компьютера в ОЗУ нет. Выход из этой ситуации состоит в последовательной, поэтапной загрузке ОС в оперативную память.

Первый этап загрузки ОС. В системном блоке компьютера находится постоянное запоминающее устройство (ПЗУ, постоянная память, ROM-ReadOnlyMemory — память с доступом только для чтения), в котором содержатся программы тестирования блоков компьютера и первого этапа загрузки ОС. Они начинают выполнятся с первым импульсом тока при включении компьютера. На этом этапе процессор обращаются к диску и проверяет наличие на определенном месте (в начале диска) очень небольшой программы — загрузчика. Если эта программа обнаружена, то она считывается в ОЗУ и ей передается управление.

Второй этап загрузки ОС. Программа — загрузчик, в свою очередь, ищет на диске базовый модуль ОС, переписывает его память и передает ему управление.

Что такое операционная система и как она работает

Третий этап загрузки ОС. В состав базового модуля входит основной загрузчик, который ищет остальные модули ОС и считывает их в ОЗУ. После окончания загрузки ОС управление передается командному процессору и на экране появляется приглашение системы к вводу команды пользователя.

Заметим, что в оперативной памяти во время работы компьютера обязательно должны находится базовый модуль ОС и командный процессор. Следовательно, нет необходимости загружать в оперативную память все файлы ОС одновременно. Драйверы устройств и утилиты могут подгружаться в ОЗУ по мере необходимости, что позволяет уменьшать обязательный объем оперативной памяти, отводимый под системное программное обеспечение.

Первая задача ОС – организация связи, общения пользователя с компьютером в целом и его отдельными устройствами. Такое общение осуществляется с помощью команд, которые в том или ином виде человек сообщает операционной системе. В ранних вариантах операционных систем такие команды просто вводились с клавиатуры в специальную строку. В последующем были созданы программы – оболочки ОС, которые позволяют общаться не только с ОС не только текстовым языком команд, а с помощью меню (в том числе пиктографического) или манипуляций с графическими объектами.

Вторая задача ОС – организация взаимодействия всех блоков компьютера в процессе выполнения программы, которую назначил пользователь для решения задачи. В частности, ОС организует и следит за размещением в оперативной памяти и на диске нужных для работы программы данных, обеспечивает своевременное подключение устройств компьютера по требованию программы и т.п.

Третья задача ОС – обеспечение так называемых системных работ, которые бывает необходимо выполнить для пользователя. Сюда относится проверка, “лечение” и форматирование диска, удаление и восстановление файлов, организация файловой системы и т.п. Обычно такие работы осуществляются с помощью специальных программ, входящих в ОС и называемых утилитами.

Операционная система выполняет роль связующего звена между аппаратурой компьютера, с одной стороны, и выполняемыми программами, а также пользователем, с другой стороны.

ОС обычно хранится во внешней памяти компьютера – на диске. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ.

Этот процесс называют загрузкой ОС.

В функции ОС входит:

  • -осуществление диалога с пользователем;
  • -ввод-вывод и управление данными;
  • -планирование и организация процесса обработки программ;
  • -распределение ресурсов (оперативной памяти, процессора, внешних устройств);
  • -запуск программ на выполнение;
  • -всевозможные вспомогательные операции обслуживания;
  • -передача информации между различными внутренними устройствами;
  • -программная поддержка работы периферийных устройств (дисплея, клавиатуры, принтера и др.).

ОС можно назвать программным продолжением устройства управления компьютера.

В зависимости от количества одновременно обрабатываемых задач и числа пользователей, которых могут обслуживать ОС, различают четыре основных класса операционных систем:

  • 1.однопользовательские однозадачные, которые поддерживают одну клавиатуру и могут работать только с одной (в данный момент) задачей;
  • 2.однопользовательские однозадачные с фоновой печатью, которые позволяют помимо основной задачи запускать одну дополнительную задачу, ориентированную как правило, на вывод информации на печать.
  • 3.однопользовательские многозадачные, которые обеспечивают одному пользователю параллельную обработку нескольких задач.
  • 4.многопользовательские многозадачные, позволяющие на одном компьютере запускать несколько задач нескольким пользователям.

ОС для персонального компьютера, ориентированного на профессиональное применение, должна содержать следующие основные компоненты:

  • -программы управления вводом/выводом;
  • -программы, управляющие файловой системой и планирующие задания для компьютера;
  • -процессор командного языка, который принимает, анализирует и выполняет команды, адресованные ОС.

В каждой ОС имеется свой командный язык, который позволяет пользователю выполнять те или иные действия:

  • -обращаться к каталогу;
  • -выполнять разметку внешних носителей;
  • -запускать программы;
  • -… и другие действия.

Анализ и исполнение команд пользователя, включая загрузку готовых программ из файлов в оперативную память и их запуск, осуществляет командный процессор ОС.

Важным классом системных программ являются драйверы устройств.

Для управления внешними устройствами компьютера используются специальные системные программы – драйверы. Драйверы стандартных устройств образуют в совокупности базовую систему ввод-вывод ( BIOS ), которая обычно заносится в постоянное ЗУ компьютера.

Нередко к системным программам относят антивирусные средства, программы архивирования файлов и т.п.

Второй класс программ – это прикладные программы. Здесь нет единой точки зрения, какие именно программы относятся к этому классу. Обычно прикладной называют любую программу, позволяющую пользователю без программирования решать определенный класс задач

Операционная система блестяще справляется со своими обязанностями. На практике одно из основных преимуществ использования OS заключается в простоте ее понимания, несмотря на функциональную сложность (То есть система рассчитана на выполнение достаточно сложных функций).

Существуют несколько наиболее распространенных ОС.

Например, MS-DOS расшифровывается как дисковая операционная система. Разработчиком MS-DOS является Корпорация Microsoft.

Источник: www.sites.google.com

Что такое операционная система это комплекс программ

Операционные системы

В этой статье я приведу теорию операционных систем сжато. Статья будет полезна для студентов и всех желающих изучить основы администрирования операционных систем.
Так же советую почитать статьи которые я разбираю на практических примерах:

  • Основы компьютерных сетей.
  • Маршрутизация в Windows.
  • Настройка простой (одноранговой) локальной сети.
  • Администрирование учетных записей пользователей в Windows.

Операционная система

Операционная система — это комплекс взаимосвязанных программ, который взаимодействует как интерфейс между приложениями и пользователями.

Основные функции операционных систем:

  • Предоставление пользователю вместо реальной аппаратуры виртуальной машины с которой удобно работать.
  • Повышение эффективности использования вычислительной системы путем рационального управления ее ресурсами.

Операционная система управляет процессами. Одна из задач операционной системы — распределение ресурсов между процессами, конкурирующими за эти ресурсы.

На пальцах. Допустим есть у нас компьютер с 2 ГБ оперативной памяти. На компьютере установлен антивирус Касперского и MS офис. Например мы работаем только в экселе. Итого что происходит:
1. Запускается ОС, запускаются процессы необходимые для стабильной работы ОС.
2. Запускается процесс Касперского (у меня он называется AVP21.2 Kaspersky Anti-Virus Service).
3. Вы запускаете эксель, он запускает свой процесс.
4. Вся оперативная память начинает забиваться так как антивирусу и экселю нужны ресурсы, а часть ресурсов уже занята процессами ОС.
5. Возникает конкуренция за ресурсы.

Так вот, операционная система регулирует эту конкуренцию. При этом нужно достичь максимальной производительности. Если в двух словах, не вдаваясь в подробности.

Читайте также:
Асер портал что это за программа и нужна ли она

Понятие процесса: процесс это динамический объект который возникает в операционной системе после запуска программы, он содержит требования к ресурсам.

Контекст процесса — информация о текущем состоянии процесса, которая включает описание:

  • свойств процесса,
  • открытых файлов,
  • занимаемых участков оперативной памяти,
  • состояния регистров процесса,
  • и иные описания.

Задачи операционной системы при управлении ресурсами

  • Планирование ресурса.
  • Раздача ресурсов.
  • Отслеживание состояния и учет ресурсов.
  • Решение конфликтов между ресурсами.

Операционная система определяет какому процессу и в каком количестве нужно выделить определенный ресурс. После выделения она ведет учет использования ресурсов. При необходимости решает конфликты. В самом простом случае ресурсы распределяется по приоритетам установленным по умолчанию.

Пользователь взаимодействует с операционной системой через пользовательский интерфейс (UI — user interface).

Пользовательские интерфейсы бывают:
1. CLI — интерфейс командной строки.
2. GUI — графический пользовательский интерфейс.

Пример интерфейса командной строки.

Маршрутизация в Windows

Пример графического пользовательского интерфейса.

Выбор типа динамического обновления DNS-зоны

Подсистема управления памятью

Подсистема управления памятью выполняет следующие задачи:

  1. Ведет учет занятой и свободной оперативной памяти.
  2. Выделяет память процессам и освобождает память при завершении процесса.
  3. Настраивает адресно-зависимые части кодов процесса на физические адреса выделенной памяти.
  4. Защищает память выделенную определенному процессу.
  5. Работает с виртуальной памятью.

Виртуальная память это участок памяти на жестком диске который дополняет оперативную память в случае ее нехватки.

Использование виртуальной памяти позволяет работать с процессорами адресное пространство которых больше, чем оперативная память и увеличивать количество выполняемых одновременно процессов.

Из-за этого довольно сильно тормозит Windows 10 без SSD, так как операционная система часто использует виртуальную память, а скорости обычного HDD диска не хватает для быстрой реакции, поэтому начинаются тормоза.

По сути подсистема управления памятью проверяет есть ли свадебная оперативная память, если да — выделяет, если нет — задействует виртуальную память.

Подсистема управления файлами

Файловая система позволяет работать не напрямую с данными на носителях, а с файлами.

Файл, по сути, это некоторая последовательность байт которая имеет определенное имя. Тесть виртуальный объект.

Задачи файловой системы:

  1. Предоставление наборов данных в виде иерархической структуры файлов и каталогов.
  2. Преобразование символьных имен файлов в физические адреса данных на диске.
  3. Организация совместного доступа к файлам.
  4. Защита файлов от несанкционированного доступа.

Подсистема управления процессами

Позволяет работать процессам с ресурсами.

  1. Производит генерацию и хранение данных о потребностях процесса в ресурсах и о фактически выделенных ресурсах.
  2. Выделяет оперативную память, процессорное время и другие ресурсы для работы процесса.
  3. Поддерживает очередь заявок процессов на ресурсы.
  1. Защита ресурсов, которые были выделены процессу, от вмешательства других процессов.
  2. Организация совместного доступа к ресурсам.
  3. Синхронизация работы процессов при совместном доступе к ресурсам.
  4. Реализация межпроцессорного взаимодействия.

Управление памятью

Рассмотрим управление памятью в операционных системах подробнее.

Виртуальное адресное пространство процесса

  • Символьные имена — идентификаторы переменных и команд в программе, присваиваемые программистом.
  • Виртуальные адреса — условные адреса, присваиваемые транслятором.
  • Физические адреса — номера ячеек оперативной памяти, в которых находятся переменные и команды.
  1. Метки операторов заменяют для программиста адреса, по которым команды находятся в памяти.
  2. Имена переменных заменяют адреса, по которым данные находятся в памяти.
  3. Имя программы заменяет адрес, по которому первая команда программы находится в памяти.

Физическая память

Физическая память представляет собой упорядоченное множество ячеек реально существующей оперативной памяти, каждая из которых пронумерована, и к ней можно обратиться, используя порядковый номер.

Количество ячеек физической памяти ограничено и фиксировано.

Виртуальное адресное пространство

Совокупностью виртуальных адресов процесса называют виртуальным адресным пространством.

У процессов одинаков диапазон виртуальных адресов, но виртуальные пространства различны, так как отображаются на разные физические адреса.

Максимально возможным виртуальным адресным пространством считают потенциально возможный размер виртуального адресного пространства процесса, который определяется архитектурой компьютера.

Как правило, изначальное неизвестно количество памяти, которое потребуется программе для работы. Поэтому на каждую программу выделяется максимально возможное адресное пространство.

Назначенным виртуальным адресным пространством называют размер виртуального адресного пространства, который необходим процессу для работы и реально используется в текущий момент.

Размер назначенного адресного пространства может меняться во время выполнения процесса.

Отображение виртуального адресного пространства на физическую память

Разные процессы в операционной системе имеют разные адреса виртуального пространства, которые преобразуются определенным образом в физические. Подробно механизм преобразования я не буду рассматривать, так как скорее всего не политься у меня объяснить его простым языком.

Память бывает разделяемая и неразделяемая.

Разделяемая память это память, которая видна более чем одному процессу или память, которая присутствует в виртуальном адресном пространстве более чем одного процесса.

Неразделяемая память это закрытая область для хранения собственных данных процесса.

На рисунке выше разделимый участок оперативной памяти отмечен серым цветом.

Для каждого процесса виртуальное адресное пространство делиться на две части:

  1. Системная часть – одинакова для всех процессов и содержит ядро операционной системы и разделяемые различными объектами процессы.
  2. Пользовательская часть – индивидуальна для каждого процесса и содержит коды и данные прикладной программы.

Системная часть разделяется на вытесняемую и не вытесняемую.

По сути: если памяти не хватает, то вытесняемая память переходит из оперативной памяти на жесткий диск. Как я писал ранее это очень любимая тема Windows 10.

Подведем итог. В операционной система подсистема управления памятью решает следующие задачи:

  • Выделяет память процессам и освобождает ее при завершении процесса.
  • Распределяет имеющуюся память между одновременно выполняемыми процессами статически и динамически.
  • Защищает адресное пространство процесса от других процессов.
  • Ведет учет используемой памяти.
  • Преобразует виртуальные адреса в физические.
  • Вытесняет часть данных на жесткий диск и возвращает их обратно.

Обычно мы слышим такой термин как файл подкачки. так вот, файл подкачки это ни что иное как виртуальная память. То есть это метод организации вычислительного процесса при котором некоторые данные временно выгружаются на жесткий диск. Теперь если вы увидите надпись «Файл подкачки» знайте что это такое.

Допустим, у нас есть три процесса, они находятся в оперативной памяти и занимают ее полностью. Пользователь запускает четвертый процесс, памяти для него не хватает. Операционная система выгружает первый процесс в виртуальную память. Этот самый файл подкачки на жестком диске. Когда оперативная память освобождается, четвертый процесс загружается обратно в нее.

Управление устройствами в операционных системах

Управление устройствами в операционной системе производится с помощью подсистемы управления устройствами ввода-вывода.

  • Организация параллельной работы устройств ввода-вывода и процессора.
  • Согласование кеширования и обмена данными.
  • Разделение устройств между процессами.
  • Обеспечение работоспособности логического пользовательского интерфейса.
  • Поддержка драйверов устройств.
  • Поддержка различных файловых систем.

То есть подсистема отвечает за то, что бы операционная система могла работать с различными устройствами.

Операционная система взаимодействует с подсистемой ввода-вывода с помощью:

  • Контроллеров.
  • Драйверов.

Контроллер это блок управления устройством ввода-вывода.

Драйвер это программный модуль, который управляет устройством.

Контроллер получает от драйвера выводимые на устройстве данные и управляющие команды. После окончания выполнения задачи контроллер выполняет прерывание.

То есть у нас есть некоторое устройство. Управляет этим устройством контроллер. После того как мы устанавливаем на компьютер необходимый драйвер контроллер устройства может «общаться» с компьютером через контроллер с помощью драйвера.

Организация параллельной работы устройств ввода-вывода и процессора происходит следующим образом.

Контроллер управляет устройством, он работает независимо от операционной системы в периоды между выдачами команд.

Подсистема ввода-вывода в режиме реального времени планирует и осуществляет запуск и остановку различных драйверов. При этом она учитывает время реакции (обеспечивает приемлемое время, наверное, видели ошибку, если устройство долго не отвечает) драйверов на события контроллера.

Подсистема ввода-вывода согласовывает скорость обмена и кеширования данных с контроллером устройства.

Согласование необходимо из-за того, что скорости обмена контроллеров и оперативной памятью различаются. При согласовании скорость обмена данными сокращается количество операций ввода-вывода, операционная система работает быстрее.

Чтобы согласовать скорости используется буферизация данных и реализуется процесс синхронного доступа считывающего и пишущего потоков к буферу.

Структура подсистемы ввода-вывода

На этом все. Если у вас появились вопросы, задавайте их в комментариях.

Анатолий Бузов

Анатолий Бузов / об авторе

Обучаю HTML, CSS, PHP. Создаю и продвигаю сайты, скрипты и программы. Занимаюсь информационной безопасностью. Рассмотрю различные виды сотрудничества.

Источник: abuzov.com

Введение в операционные системы

Аннотация: Функции операционной системы. Структура операционной системы. Классификация операционных систем. Требования к операционным системам.

Операционная система (operating system ) – комплекс программ, предоставляющий пользователю удобную среду для работы с компьютерным оборудованием.

Операционная система позволяет запускать пользовательские программы; управляет всеми ресурсами компьютерной системы – процессором (процессорами), оперативной памятью, устройствами ввода вывода; обеспечивает долговременное хранение данных в виде файлов на устройствах внешней памяти; предоставляет доступ к компьютерным сетям.

Для более полного понимания роли операционной системы рассмотрим составные компоненты любой вычислительной системы (рис.1.1).

Компоненты вычислительной системы


Рис. 1.1. Компоненты вычислительной системы

Все компоненты можно разделить на два больших класса – программы или программное обеспечение ( ПО , software ) и оборудование или аппаратное обеспечение ( hardware ). Программное обеспечение делится на прикладное, инструментальное и системное. Рассмотрим кратко каждый вид ПО .

Цель создания вычислительной системы – решение задач пользователя. Для решения определенного круга задач создается прикладная программа ( приложение , application ). Примерами прикладных программ являются текстовые редакторы и процессоры (Блокнот, Microsoft Word ), графические редакторы ( Paint , Microsoft Visio), электронные таблицы (Microsoft Excel ), системы управления базами данных (Microsoft Access, Microsoft SQL Server ), браузеры ( Internet Explorer) и т. п. Все множество прикладных программ называется прикладным программным обеспечением ( application software ).

Читайте также:
Ван драйв что это за программа

Создается программное обеспечение при помощи разнообразных средств программирования (среды разработки, компиляторы, отладчики и т. д.), совокупность которых называется инструментальным программным обеспечением. Представителем инструментального ПО является среда разработки Microsoft Visual Studio .

Основным видом системного программного обеспечения являются операционные системы. Их основная задача – обеспечить интерфейс (способ взаимодействия) между пользователем и приложениями с одной стороны, и аппаратным обеспечением с другой. К системному ПО относятся также системные утилиты – программы, которые выполняют строго определенную функцию по обслуживанию вычислительной системы, например, диагностируют состояние системы , выполняют дефрагментацию файлов на диске, осуществляют сжатие ( архивирование ) данных. Утилиты могут входить в состав операционной системы.

Взаимодействие всех программ с операционной системой осуществляется при помощи системных вызовов ( system calls) – запросов программ на выполнение операционной системой необходимых действий. Набор системных вызовов образует API – Application Programming Interface ( интерфейс прикладного программирования).

Далее рассмотрим, какие функции должны выполнять современные операционные системы.

Функции операционной системы

К основным функциям, выполняемым операционными системами, можно отнести:

  • обеспечение выполнения программ – загрузка программ в память, предоставление программам процессорного времени, обработка системных вызовов;
  • управление оперативной памятью – эффективное выделение памяти программам, учет свободной и занятой памяти;
  • управление внешней памятью – поддержка различных файловых систем;
  • управление вводом-выводом – обеспечение работы с различными периферийными устройствами;
  • предоставление пользовательского интерфейса;
  • обеспечение безопасности – защита информации и других ресурсов системы от несанкционированного использования;
  • организация сетевого взаимодействия.

Структура операционной системы

Перед изучением структуры операционных систем следует рассмотреть режимы работы процессоров.

Современные процессоры имеют минимум два режима работы – привилегированный (supervisor mode) и пользовательский (user mode).

Отличие между ними заключается в том, что в пользовательском режиме недоступны команды процессора, связанные с управлением аппаратным обеспечением, защитой оперативной памяти, переключением режимов работы процессора. В привилегированном режиме процессор может выполнять все возможные команды.

Приложения, выполняемые в пользовательском режиме, не могут напрямую обращаться к адресным пространствам друг друга – только посредством системных вызовов.

Все компоненты операционной системы можно разделить на две группы – работающие в привилегированном режиме и работающие в пользовательском режиме, причем состав этих групп меняется от системы к системе.

Основным компонентом операционной системы является ядро (kernel). Функции ядра могут существенно отличаться в разных системах; но во всех системах ядро работает в привилегированном режиме (который часто называется режим ядра, kernel mode).

Термин «ядро» также используется в разных смыслах. Например, в Windows термин «ядро» (NTOS kernel) обозначает совокупность двух компонентов – исполнительной системы (executive layer) и собственно ядра (kernel layer) [12].

Существует два основных вида ядер – монолитные ядра (monolithic kernel) и микроядра (microkernel). В монолитном ядре реализуются все основные функции операционной системы, и оно является, по сути, единой программой, представляющей собой совокупность процедур [6]. В микроядре остается лишь минимум функций, который должен быть реализован в привилегированном режиме: планирование потоков, обработка прерываний, межпроцессное взаимодействие. Остальные функции операционной системы по управлению приложениями, памятью, безопасностью и пр. реализуются в виде отдельных модулей в пользовательском режиме.

Ядра, которые занимают промежуточные положение между монолитными и микроядрами, называют гибридными (hybrid kernel).

Примеры различных типов ядер:

  • монолитное ядро – MS-DOS, Linux, FreeBSD;
  • микроядро – Mach, Symbian, MINIX 3;
  • гибридное ядро – NetWare, BeOS, Syllable.

Обсуждение того, к какому типу относится ядро Windows NT, приведено в [5; 2]. В [2] говорится о том, что Windows NT имеет монолитное ядро, однако, поскольку в Windows NT имеется несколько ключевых компонентов, работающих в пользовательском режиме (например, подсистемы окружения и системные процессы – см. Лекцию 4 «Архитектура Windows»), то относить Windows NT к истинно монолитным ядрам нельзя, скорее к гибридным.

Кроме ядра в привилегированном режиме (в большинстве операционных систем) работают драйверы (driver) – программные модули, управляющие устройствами.

В состав операционной системы также входят:

  • системные библиотеки (system DLL – Dynamic Link Library, динамически подключаемая библиотека), преобразующие системные вызовы приложений в системные вызовы ядра;
  • пользовательские оболочки (shell), предоставляющие пользователю интерфейс – удобный способ работы с операционной системой.

Пользовательские оболочки реализуют один из двух основных видов пользовательского интерфейса:

  • текстовый интерфейс (Text User Interface, TUI), другие названия – консольный интерфейс (Console User Interface, CUI), интерфейс командной строки (Command Line Interface, CLI);
  • графический интерфейс (Graphic User Interface, GUI).

Пример реализации текстового интерфейса в Windows – интерпретатор командной строки cmd.exe; пример графического интерфейса – Проводник Windows (explorer.exe).

Классификация операционных систем

Классификацию операционных систем можно осуществлять несколькими способами.

  1. По способу организации вычислений:
    • системы пакетной обработки (batch processing operating systems) – целью является выполнение максимального количества вычислительных задач за единицу времени; при этом из нескольких задач формируется пакет, который обрабатывается системой;
    • системы разделения времени (time-sharing operating systems) – целью является возможность одновременного использования одного компьютера несколькими пользователями; реализуется посредством поочередного предоставления каждому пользователю интервала процессорного времени;
    • системы реального времени (real-time operating systems) – целью является выполнение каждой задачи за строго определённый для данной задачи интервал времени.
    • системы с монолитным ядром (monolithic operating systems);
    • системы с микроядром (microkernel operating systems);
    • системы с гибридным ядром (hybrid operating systems).
    • однозадачные (single-tasking operating systems);
    • многозадачные (multitasking operating systems).
    • однопользовательские (single-user operating systems);
    • многопользовательские (multi-user operating systems).
    • однопроцессорные (uniprocessor operating systems);
    • многопроцессорные (multiprocessor operating systems).
    • локальные (local operating systems) – автономные системы, не предназначенные для работы в компьютерной сети;
    • сетевые (network operating systems) – системы, имеющие компоненты, позволяющие работать с компьютерными сетями.
    • серверные (server operating systems) – операционные системы, предоставляющие доступ к ресурсам сети и управляющие сетевой инфраструктурой;
    • клиентские (client operating systems) – операционные системы, которые могут получать доступ к ресурсам сети.
    • открытые (open-source operating systems) – операционные системы с открытым исходным кодом, доступным для изучения и изменения;
    • проприетарные (proprietary operating systems) – операционные системы, которые имеют конкретного правообладателя; обычно поставляются с закрытым исходным кодом.
    • операционные системы мэйнфреймов – больших компьютеров (mainframe operating systems);
    • операционные системы серверов (server operating systems);
    • операционные системы персональных компьютеров (personal computer operating systems);
    • операционные системы мобильных устройств (mobile operating systems);
    • встроенные операционные системы (embedded operating systems);
    • операционные системы маршрутизаторов (router operating systems).

    Требования к операционным системам

    Основное требование, предъявляемое к современным операционным системам – выполнение функций, перечисленных выше в параграфе «Функции операционных систем». Кроме этого очевидного требования существуют другие, часто не менее важные [3]:

    • расширяемость – возможность приобретения системой новых функций в процессе эволюции; часто реализуется за счет добавления новых модулей;
    • переносимость – возможность переноса операционной системы на другую аппаратную платформу с минимальными изменениями;
    • совместимость – способность совместной работы; может иметь место совместимость новой версии операционной системы с приложениями, написанными для старой версии, или совместимость разных операционных систем в том смысле, что приложения для одной из этих систем можно запускать на другой и наоборот;
    • надежность – вероятность безотказной работы системы;
    • производительность – способность обеспечивать приемлемые время решения задач и время реакции системы.

    Резюме

    В этой лекции приведено определение операционной системы, представлены виды программного обеспечения, рассмотрены функции и структура операционной системы. Особое внимание уделено понятию «ядра». Также приведены различные способы классификации операционных систем и требования, предъявляемые к современным операционным системам.

    В следующей лекции будет представлен обзор операционных систем Microsoft Windows.

    Контрольные вопросы

    1. Дайте определение понятию «операционная система».
    2. Назовите примеры прикладного, инструментального и системного программного обеспечения.
    3. Дайте определение понятий «системный вызов», «API», «драйвер», «ядро».
    4. Какие виды ядер вы знаете? К каким видам относятся ядра известных вам операционных систем?
    5. Чем ядро отличается от операционной системы?
    6. Приведите несколько способов классификации операционных систем.
    7. Назовите требования к современным операционным системам и объясните, что они означают.

    Источник: intuit.ru

    # факты | Какие бывают операционные системы?

    Когда вы включаете свой компьютер, то первым делом ждете, когда в оперативную память загрузится операционная система. И только потом обращаетесь к необходимым вам приложениям. Большая часть всего, что пользователь делает со своим компьютером, совершается посредством операционной системы. Ее следует рассматривать в качестве управляющего центра компьютера.

    Большая часть современных персональных компьютеров работает под управлением операционных систем Microsoft Windows. Mac поставляются с уже предустановленной системой OS X, которая до недавнего времени называлась Mac OS X. Многие корпоративные серверы управляются операционными системами Linux и UNIX.

    Операционные системы

    Операционные системы

    В наши дни операционные системы расположились не только в компьютерах, но и во многих других электронных устройствах. И современные мобильные телефоны и точки беспроводного доступа тоже работают под управлением операционных систем, хотя и несколько иных, чем компьютерные. Что и говорить: современный телефон мощнее настольного компьютера начала века.

    Общей задачей операционной системы является организация аппаратной и программной составляющей компьютера и контроль над ними. Таким образом обеспечивается гибкость и предсказуемость поведения цифрового устройства. Сегодня мы будем говорить об операционной системе настолько компьютера. При этом следует помнить, что и ноутбук, и смартфон, и планшет тоже являются компьютерами по своей сути. Следовательно, хотя принципы работы операционных систем этих устройств могут, разумеется, отличаться в деталях, но в своей основе повторяют те, которые характерны для любого персонального компьютера, сколь бы гигантским или, напротив, миниатюрным он ни был.

    Читайте также:
    Lo и программы что это

    Что такое операционная система?

    Операционные системы

    Далеко не каждый компьютер обладает операционной системой. Например, компьютер, управляющий микроволновой печью на вашей кухне, операционной системы лишен. Дело в том, что этому компьютеру приходится иметь дело всего с одним набором задач, определяемым установками времени, температуры и режимы работы. И, возможно, несколькими предустановленными режимами. «Гибкости ума» от этого компьютера не требуется и операционная система только увеличила бы затраты на разработку и производство этого кухонного устройства. Компьютеру микроволновки для всех его нехитрых задач достаточно всего лишь одной программы, реализованной на аппаратном уровне.

    Но существуют и другие устройства, которые операционная система наделяет несколькими важными способностями:

    • Позволяет выполнять различные задачи
    • Обеспечивает взаимодействие пользователя с устройством на более сложном уровне
    • Поддерживает в порядке изменения, вносимые пользователем

    Операционными системами обладают все настольные компьютеры. Наиболее распространены операционные системы семейства Windows, разработанные корпорацией Microsoft. Apple предустанавливает на свои компьютеры собственную операционную систему, о которой речь шла выше. Кроме того, существует огромное семейство UNIX-систем.

    История их разработки полна выдающимися личностями, инновационными корпорациями и примерами сотрудничества во имя достижения совместной цели. На свете существуют сотни различных операционных систем, ориентированных на выполнение узкоспециальных задач. В их числе операционные системы для больших ЭВМ (мэйнфреймов), роботов, промышленного оборудования и систем реального времени.

    Каждое устройство, обладающее операционной системой, обычно позволяет производить изменения в процессе работы. И для этого совсем не нужно переставлять местами микросхемы. Пользователь программно отдает команды, которые затем сообщают аппаратной части устройства, как себя вести в изменившихся условиях.

    Для пользователя настольного компьютера это означает возможность ставить обновления безопасности, системные заплатки, дополнительные приложения и даже менять операционную систему. А компьютер при этом остается прежним. Иными словами, вы можете поменять поведение своего компьютера, ничего не меняя в его аппаратной составляющей. Это же касается и современных мобильных телефонов. Вне зависимости от того, на каком устройстве установлена операционная система, она берет на себя контроль над каждой выполняемой им задачей и управление его системными ресурсами.

    Функции операционной системы

    Операционные системы

    Если сильно упростить описание выполняемых операционной системой задач, то можно выделить две основные:

    1. Она управляет аппаратными и программными системными ресурсами. Если говорить о типичном настольном компьютере, то к этим ресурсам относятся в том числе: процессор, память, дисковое пространство. Если говорить о мобильном телефоне, то сюда же добавляются клавиатура (или сенсорный экран), адресная книга, система набора номеров, батарея и сетевое соединение
    2. Она обеспечивает стабильное и последовательное взаимодействие приложений с аппаратным обеспечением. Приложение может быть незнакомо с детальными характеристиками аппаратной части

    Первая задача, управление аппаратными и программными ресурсами, крайне важна. Дело в том, что различные программы и методы ввода данных соперничают за внимание центрального процессора (ЦПУ, ЦП, CPU), о принципах работы которого мы уже писали. Им необходима память, пространство накопителя, а также полоса ввода и вывода.

    Операционная система играет роль хорошего наставника, устраивая все так, чтобы каждое приложение получило необходимые ему ресурсы, и при этом не вступило в противоречие с другими приложениями. Операционная система распределяет ограниченные ресурсы компьютера таким образом, чтобы результат для всех пользователей и всех приложений получился наилучшим. Разумеется, из возможных в данной конфигурации. Компьютер обладает вполне определенной производительностью процессора и объемом памяти, наращивание которой — как нам уже известно — не всегда ведет к росту производительности машины. Операционной системе предстоит наиболее выгодным образом распределять эти и другие ресурсы.

    Вторая задача, обеспечение взаимодействия программной и аппаратной части, обретает особую важность с учетом того факта, что современные компьютеры открыты для внесения изменений в их конфигурацию. Средства интерфейса прикладных программ (application program interface, API) позволяют разработчику написать программу на одном компьютере и при этом почти не сомневаться в том, что она будет работать и на другом компьютере такого же типа. Даже в том случае, если объем памяти или емкость накопителя на двух машинах будут отличаться друг от друга.

    Операционная система устраивает все так, чтобы приложение продолжало запускаться на данном компьютере даже после того, как будет модифицирована его аппаратная часть или произведены программные обновления. Дело в том, что именно операционная система, а не каждое конкретное приложение, следит за аппаратным обеспечением и распределением его ресурсов. Перед разработчиками операционных систем стоит непростая задача: сделать систему совместимой с оборудованием от тысяч предприятий, выпускающих компьютерные компоненты и периферийные устройства. Современная операционная система способна «узнать» тысячи различных принтеров, жестких дисков и специальных периферийных устройств. Более того, в каждом конкретном случае это оборудование будет сочетаться иным образом.

    Типы операционных систем

    Операционные системы


    Все огромное множество существующих операционных систем можно разделить на четыре основных типа:

    1. Операционные системы реального времени (Real-time operating system, RTOS). Операционные системы реального времени предназначены для управления машинным оборудованием, научными инструментами и промышленными системами. Обычно пользовательский интерфейс таких систем не балует дизайнерскими изысками, а утилиты, ориентированные на конечного пользователя, отсутствуют. Это готовая к использованию «закрытая коробка». Важнейшей задачей такого типа операционной системы является следить за тем, чтобы определенная операция выполнялась в определенный отрезок времени. И эти отрезки были равными. В сложных машинах нельзя допустить, чтобы их элементы двигались быстрее чем нужно, поскольку система располагает «лишними» ресурсами. Или, наоборот, не двигались вовсе по причине занятости системы
    2. Однопользовательские однозадачные операционные системы (Single-user, single task). Как следует из их названия, эти операционные системы ориентированы на выполнение одним пользователем одной задачи в один период времени. Ярким примером системы такого типа может служить Palm OS для наладонников Palm. Эти устройства пользовались определенной популярностью до того как началось массовое распространение смартфонов
    3. Однопользовательские многозадачные операционные системы (Single-user, multi-tasking). Системы этого типа управляют большинством современных настольных и портативных компьютеров. И Microsoft Windows, и Apple OS X относятся именно к этому типу. Например, пользователь Windows может одновременно писать заметку в текстовом редакторе и загружать файл из Интернета. В это же самое время принтер может печатать, а почтовый клиент принимать электронную корреспонденцию
    4. Многопользовательские операционные системы (Multi-user). Многопользовательские операционные системы позволяют нескольким пользователям одновременно получать доступ к ресурсам устройства. Операционной системе приходится удерживать баланс между теми требованиями, которые предъявляют разные пользователи. При этом операционной системе приходится следить за тем, чтобы у каждой из работающих программ было достаточно ресурсов, и задача, решаемая одним из пользователей, не мешала другим пользователям. В качестве ярких примеров многопользовательских систем можно привести Unix, VMS и операционные системы для больших ЭВМ, подобные MVS

    Важно внести ясность в некоторые тонкости, которые могут затруднить определение типа операционной системы. Существуют многопользовательские операционные системы и системы, поддерживающие сетевые соединения. И это различные операционные системы. Например, Windows 2000 и Novell Netware поддерживали сотни и даже тысячи сетевых соединений.

    При этом их нельзя считать истинно многопользовательскими. Единственным настоящим пользователем Windows 2000 и Netware является системный администратор. Сетевая поддержка и все удаленные аккаунты пользователей включены в общий план операционной системы, программно определяемый ее администратором.

    Компьютерные операционные системы

    Операционные системы

    Когда вы включаете питание компьютера, первой запускающейся программой становится набор инструкций, содержащийся в постоянной памяти компьютера (ПЗУ, ROM). Этот код тестирует системное аппаратное обеспечение и убеждается в том, что все работает корректно. Этот процесс называется самотестированием при запуске (POST, power-on self test).

    В его ходе осуществляется проверка процессора, памяти и базовой системы ввода-вывода (БСВВ, BIOS) на ошибки. Результаты тестирования сохраняются в специальной области памяти. Если самотестирование завершилось успешно, запускается размещенное в постоянной памяти программное обеспечение. Оно известно под именем BIOS.

    Это программное обеспечение начинает активацию жестких дисков компьютера. В большинстве современных компьютеров при активации жесткого диска находится первый фрагмент операционной системы: начальный загрузчик (bootstrap loader).

    Начальный загрузчик является маленькой программой, у которой всего одна функция: загрузить в память операционную систему. Это позволит начать работу. В общем случае, загрузчик запускает небольшие программы-драйверы, которые взаимодействуют с различными аппаратными подсистемами и контролируют их.

    Все это располагается в той же памяти, которая содержит саму операционную систему, пользовательскую информацию и приложения. В движение приводится структура данных, содержащая огромное множество сигналов, индикаторов и синхронизаций, обеспечивающих взаимодействие в пределах и между подсистемами и приложениями компьютера. Затем контроль над компьютером переходит к операционной системе.

    На этом мы поставим запятую, поскольку нам предстоит еще поговорить о том, какие группы задач выполняет типичная операционная система. Но это станет темой очередного повествования.

    Продолжение следует…

    По материалам computer.howstuffworks.com

    Источник: hi-news.ru

    Рейтинг
    ( Пока оценок нет )
    Загрузка ...
    EFT-Soft.ru