Не секрет, что все величины в физическом мире носят аналоговый характер. Для измерения этих величин, люди придумали множество различных приборов. Так, например, термометр позволяет узнать температуру вещества, барометр — давление газа, гигрометр — влажность воздуха. А с помощью весов можно измерить вес тела.
Все эти устройства имеют шкалу, которую мы используем для фиксации их показаний. Рассмотрим простой пример — определение температуры с помощью обычного градусника. Человек решает эту задачу очень просто: мы смотрим, к какому из делений ближе всего приблизился уровень жидкости в градуснике. Полученное таким образом значение и будет измеренной температурой. Иными словами, мы осуществляем преобразование аналоговой непрерывной величины в дискретную, которую можно записать на бумаге с помощью цифр.
Чтобы автоматизировать процесс измерения аналоговых величин, и возложить эту задачу на электронные приборы, инженеры создали особое устройство, называемое аналого-цифровым преобразователем (АЦП). Это устройство позволяет превращать аналоговый сигнал в цифровой код, пригодный для использования в ЭВМ.
Урок №21. Аналого-цифровой преобразователь (АЦП)
В робототехнике АЦП являются важной составляющей системы датчиков машины. Акселерометр, гироскоп (гиротахометр), барометр, магнитометр, и даже видеокамера — все эти приборы соединяются с центральным процессором с помощью АЦП.
Конструктивно, АЦП может находиться в одном корпусе с микропроцессором или микроконтроллером, как в случае Arduino Uno. В противном случае, как и все современные электронные устройства, АЦП может быть оформлен в виде отдельной микросхемы, например MCP3008:
Следует отметить, что существует и устройство с обратной функцией, называемое цифро-аналоговым преобразователем (ЦАП, DAC). Оно позволяет переводить цифровой сигнал в аналоговый. Например, во время проигрывания мелодии на мобильном телефоне происходит преобразование цифрового кода из MP3 файла в звук, который вы слышите у себя в наушниках.
Для лучшего понимания работы АЦП нам потребуется интересная задачка. В качестве оной, попробуем сделать устройство для измерения оставшегося заряда обычных пальчиковых батареек — самый настоящий цифровой вольтметр.
Функции работы с АЦП
На этом уроке изучать работу АЦП мы будем с помощью платформы Arduino. В используемой нами модели Arduino Uno, наряду с обычными выводами общего назначения (к которым мы уже подключали светодиоды и кнопки) есть целых шесть аналоговых входов. В других версиях Arduino таких входов может быть и больше, например, у Arduino Mega их 16.
На карте Arduino Uno аналоговые входы имеют буквенно-цифровые обозначения A0, A1, …, A5 (снизу слева).
Во время работы всё с теми же кнопками, мы познакомились с функцией digitalRead, которая умеет считывать цифровой сигнал с определенного входа контроллера. У этой функции существует аналоговая версия analogRead, которая может делать то же самое, но только для аналогового сигнала.
Что такое АЦП и как устроен потенциометр — управляем яркостью светодиода. Понятные уроки по Arduino
результат = analogRead( номер_контакта );
после вызова этой функции, микроконтроллер измерит уровень аналогового сигнала на заданном контакте, и сохранит результат работы АЦП в переменную «результат». При этом результатом функции analogRead будет число от 0 до 1023.
Разрядность АЦП
Надо заметить, что число 1023 здесь появилось неспроста. Дело в том, что у каждого устройства АЦП есть такой важный параметр как разрядность. Чем больше значение этого параметра, тем точнее работает прибор. Предположим, что у нас есть АЦП с разрядностью 1. Подавая на вход любое напряжения от 0 до 2,5 Вольт, на выходе мы получим 0. Любое же напряжение от 2,5 до 5 вольт даст нам единицу. То есть 1-битный АЦП сможет распознать только два уровня напряжения. Графически это можно изобразить следующим образом:
АЦП с разрядностью 2 распознает уже четыре уровня напряжения:
- от 0 до 1,25 — это 0;
- от 1,25 до 2,5 — это 1;
- от 2,5 до 3,75 — это 2;
- наконец, от 3,75 до 5 — это 3.
На следующих двух картинках изображена работа АЦП с разрядностью 2 и 3 бит:
В Arduino Uno установлен 10-битный АЦП, и это значит, что любое напряжение на аналоговом входе в диапазоне от 0 до 5 вольт будет преобразовано в число с точностью 1/1024 вольта. На графике будет сложно изобразить столько ступенек. Имея такую точность, 10-битный АЦП может «почувствовать» изменение напряжение на входе величиной всего 5 милливольт.
Опорное напряжение
Есть нюанс, который может стать причиной ошибки измерения с помощью АПЦ. Помните тот диапазон от 0 до 5 вольт в котором работает устройство? В общем случае этот диапазон выглядит иначе:
от 0 до опорного напряжения
Это изменение повлечет за собой изменение формулы расчет точности АЦП:
точность = опорное напряжение/1024
Опорное напряжение определяет границу диапазона, с которым будет работать АЦП.
В нашем примере опорное напряжение будет равно напряжению питания Arduino Uno, которое дал USB порт компьютера. У моем конкретном случае это напряжение было 5.02 Вольта, и я могу смело заявить, что измерил заряд батарейки с высокой точностью.
Что если вы питаете микроконтроллер от другого источника? Допустим у вас есть четыре NiMh аккумулятора на 1.2 Вольта. В сумме они дадут 4.8 Вольта (пусть они немного разряжены, ведь в действительности их заряжают до 1.4 Вольта). Точность измерения будет равна 4.8/1024. Это следует учесть в нашей программе.
Наконец рассмотрим случай, когда мы питаем Arduino Uno одним напряжением, а в качестве опорного хотим установить совсем другое, например, 3.3 Вольта. Что делать? Для такого варианта на Arduino Uno есть специальный вывод Vref. Чтобы решить проблему, нам нужно подать на этот контакт напряжение 3.3 Вольта, и разрешить использование внешнего источника опорного напряжения функцией:
analogReference(EXTERNAL);
которую следует вызвать внутри функции setup нашей программы.
Также следует учитывать, что результат измерения значения напряжения не может превышать границы диапазона. Если мы выбираем в качестве опорного напряжения 3.3 Вольта, а поступающий сигнал будет с большим напряжением, то мы получим неправильное значение напряжения, поскольку АЦП «не знает» о наличии более высокого напряжения.
Программа
Наша первая программа с использованием АЦП будет крайне простой: каждую секунду мы будем измерять аналоговое значение на входе A0, и передавать его в последовательный порт.
int val = 0; void setup() < Serial.begin(9600); pinMode(A0, INPUT); >void loop()
Теперь загружаем программу на Arduino, и переходим к измерениям.
Подключение
Чтобы измерить напряжение на батарейке, мы должны подключить её к нашей Arduino всего двумя контактами. Для примера используем щелочную батарейку на 1.5 Вольта.
Теперь откроем окно COM-монитора в Arduino IDE, и посмотрим какие значение выдает нам АЦП:
Что означает число 314? Вспомним, что 10-битный АЦП разбивает диапазон от 0 до 5 вольт на 1024 части. Значит точность 10-битного АЦП — 5/1024. Зная точность, мы можем записать формулу для преобразования показаний АЦП к вольтам:
где V — измеренное напряжение на батарейке;
ADC — результат работы функции analogRead.
Подставим эту формулу в программу и снова попробуем измерить заряд батарейки!
int val = 0; void setup() < Serial.begin(9600); pinMode(A0, INPUT); >void loop() < val = analogRead(A0); Serial.println((5/1024.0)*val); delay(1000); >
Уже больше похоже на правду.
Итог
Итак, мы разобрались с весьма сложной и важной темой в мире электроники. АЦП используется повсеместно, и в робототехнике без этого устройства уж точно не обойтись. Для понимания окружающего мира роботам как-то нужно переводить аналоговые ощущения в числа.
На нашем портале можно найти несколько уроков, выполнение которых зависит от понимания темы АЦП: датчик температуры, ёмкостный датчик, фоторезистор, потенциометр и аналоговый джойстик. А в совокупности с еще одной важной темой — ШИМ, применение АЦП позволит создать диммер светодиодной лампы и регулятор хода двигателя. Успехов!
Изменено: 17 Янв, 2016 18:40
Аналого-цифровые преобразования — АЦП : 12 комментариев
Можно узнать, что значит если после закрузки второй программы пишет не 1.5, а 0.93? При том,что на самой батарейке написано 1.5
Источник: robotclass.ru
Аналого-цифровое преобразование для начинающих
В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.
«
В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.
Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.
Основные характеристики АЦП
АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.
Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:
- АЦП параллельного преобразования (прямого преобразования, flash ADC)
- АЦП последовательного приближения (SAR ADC)
- дельта-сигма АЦП (АЦП с балансировкой заряда)
Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.
Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.
Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.
Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.
АЦП прямого преобразования
АЦП прямого преобразования получили широкое распространение в 1960-1970 годах, и стали производиться в виде интегральных схем в 1980-х. Они часто используются в составе «конвейерных» АЦП (в данной статье не рассматриваются), и имеют разрядность 6-8 бит при скорости до 1 GSPS.
Архитектура АЦП прямого преобразования изображена на рис. 1
Рис. 1. Структурная схема АЦП прямого преобразования
Принцип действия АЦП предельно прост: входной сигнал поступает одновременно на все «плюсовые» входы компараторов, а на «минусовые» подается ряд напряжений, получаемых из опорного путем деления резисторами R. Для схемы на рис. 1 этот ряд будет таким: (1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16) Uref, где Uref – опорное напряжение АЦП.
Пусть на вход АЦП подается напряжение, равное 1/2 Uref. Тогда сработают первые 4 компаратора (если считать снизу), и на их выходах появятся логические единицы. Приоритетный шифратор (priority encoder) сформирует из «столбца» единиц двоичный код, который фиксируется выходным регистром.
Теперь становятся понятны достоинства и недостатки такого преобразователя. Все компараторы работают параллельно, время задержки схемы равно времени задержки в одном компараторе плюс время задержки в шифраторе. Компаратор и шифратор можно сделать очень быстрыми, в итоге вся схема имеет очень высокое быстродействие.
Но для получения N разрядов нужно 2^N компараторов (и сложность шифратора тоже растет как 2^N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.
АЦП последовательного приближения
АЦП последовательного приближения реализует алгоритм «взвешивания», восходящий еще к Фибоначчи. В своей книге «Liber Abaci» (1202 г.) Фибоначчи рассмотрел «задачу о выборе наилучшей системы гирь», то есть о нахождении такого ряда весов гирь, который бы требовал для нахождения веса предмета минимального количества взвешиваний на рычажных весах. Решением этой задачи является «двоичный» набор гирь. Подробнее о задаче Фибоначчи можно прочитать, например, здесь: http://www.goldenmuseum.com/2015AMT_rus.html.
Аналого-цифровой преобразователь последовательного приближения (SAR, Successive Approximation Register) измеряет величину входного сигнала, осуществляя ряд последовательных «взвешиваний», то есть сравнений величины входного напряжения с рядом величин, генерируемых следующим образом:
1. на первом шаге на выходе встроенного цифро-аналогового преобразователя устанавливается величина, равная 1/2Uref (здесь и далее мы предполагаем, что сигнал находится в интервале (0 – Uref).
2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).
3. Шаг 2 повторяется N раз. Таким образом, N сравнений («взвешиваний») порождает N бит результата.
Рис. 2. Структурная схема АЦП последовательного приближения.
Таким образом, АЦП последовательного приближения состоит из следующих узлов:
1. Компаратор. Он сравнивает входную величину и текущее значение «весового» напряжения (на рис. 2. обозначен треугольником).
2. Цифро-аналоговый преобразователь (Digital to Analog Converter, DAC). Он генерирует «весовое» значение напряжения на основе поступающего на вход цифрового кода.
3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.
4. Схема выборки-хранения (Sample/Hold, S/H). Для работы данного АЦП принципиально важно, чтобы входное напряжение сохраняло неизменную величину в течение всего цикла преобразования. Однако «реальные» сигналы имеют свойство изменяться во времени. Схема выборки-хранения «запоминает» текущее значение аналогового сигнала, и сохраняет его неизменным на протяжении всего цикла работы устройства.
Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).
Дельта-сигма АЦП
И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.
Рис.3. Структурная схема сигма-дельта АЦП.
Принцип действия данного АЦП несколько более сложен, чем у других типов АЦП. Его суть в том, что входное напряжение сравнивается со значением напряжения, накопленным интегратором. На вход интегратора подаются импульсы положительной или отрицательной полярности, в зависимости от результата сравнения.
Таким образом, данный АЦП представляет собой простую следящую систему: напряжение на выходе интегратора «отслеживает» входное напряжение (рис. 4). Результатом работы данной схемы является поток нулей и единиц на выходе компаратора, который затем пропускается через цифровой ФНЧ, в результате получается N-битный результат. ФНЧ на рис. 3. Объединен с «дециматором», устройством, снижающим частоту следования отсчетов путем их «прореживания».
Рис. 4. Сигма-дельта АЦП как следящая система
Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к [3].
На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).
Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.
Более наглядно работу сигма-дельта АЦП демонстрирует небольшая программа, находящаяся тут: http://designtools.analog.com/dt/sdtutorial/sdtutorial.html.
Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.
Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):
Рис. 6. Структурная схема сигма-дельта модулятора
Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.
Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:
То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.
Рис. 7. Явление «вытеснения» шума в высокочастотную часть спектра
Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.
Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.
Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.
Немного истории
Самым старым упоминанием АЦП в истории является, вероятно, патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования.
Рис. 8. Первый патент на АЦП
Рис. 9. АЦП прямого преобразования (1975 г.)
Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.
На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.
Рис. 10. АЦП прямого преобразования (1970 г.)
Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).
Источник: habr.com
Что такое АЦП и чем оно отличается от ЦАП
Разбираемся с АЦП и ЦАП, какие задачи они решают, в чем их достоинства и недостатки.
Аналого-цифровой преобразователь
Аналого-цифровой преобразователь или АЦП — это устройство, преобразующее входной аналоговый сигнал в дискретный цифровой код. АЦП осуществляет операции дискретизации и квантования. Напомню, при дискретизации, отсчеты непрерывного сигнала берутся только в определенные моменты или дискреты времени, а при квантовании значение сигнала в эти моменты времени округляется до одного из фиксированных уровней, квантованные уровни затем представляются в двоичном виде. Таким образом, мы получаем цифровой сигнал из аналогового.
Как устроен АЦП
В большинстве АЦП есть устройство выборки и хранения, которые фиксируют и сохраняют значение напряжения на своем входе, в моменты замыкания ключа, а моменты замыкания ключа определяется задающим генератором, именно его частота и определяет частоту дискретизации выходного сигнала. Сигнал на выходе устройства выборки и хранения затем, округляется до одного из уровней квантования.
Как же АЦП понимает, с каким уровней квантования проассоциировать значение сигнала?
Рассмотрим простейший одноразрядный АЦП, компаратор. Он принимает на свой вход два значения напряжения, в том случае, если напряжение на первом входе больше чем на втором, он выдает логическую единицу, в противном случае 0.
Допустим, мы зафиксировали значение на втором ходе, это наш пороговый уровень, и когда изменяющейся во времени сигнал на первом входе больше этого уровня, устройство показывает 1, когда меньше 0.
Теперь представим, что компараторов несколько, когда входной сигнал превышает определённый уровень, срабатывает соответствующий компаратор, выходы всех компараторов затем преобразуется схемой приоритетного кодера в двоичное представление. АЦП в которых каждом из уровней квантования соответствует компаратор называются АЦП прямого преобразования или флеш АЦП.
Характеристики АЦП
Во-первых, АЦП отличаются по частоте дискретизации, она определяется задающим генератором. В зависимости от назначения частота дискретизации может измеряться в килогерцах, мегагерцах и даже гигагерц.
Далее идет разрядность, то есть количество бит в коде, которыми мы представляем отсчеты сигнала. От количества бит, зависит количество уровней квантования, оно определяется, как 2 в степени количество бит, если у нас 3 бита, то это 8 возможных уровней квантования, если у нас 8 бит это 256 уровней.
Диапазон входного сигнала это минимальные и максимальные значения напряжения на входе АЦП при которых устройство работает корректно. Слишком маленький сигнал АЦП может не различить и принять за нулевой уровень, слишком большие могут вызвать искажения, которые приведут к потере информации. Обычно АЦП оперируют единицами вольт.
Отношение сигнал-шум об этом параметре есть подробная статья.
Передаточная характеристика — это по определению зависимость числового эквивалента выходного кода от величины входного аналогового сигнала, она имеет вид ступенчатой функции.
Посмотрим на рисунок выше, окрестность значения входного напряжения 0,5 вольт будет приравнено к четвертому уровню квантования, то есть значение к примеру 0,52 или 0,47 также будут представлены кодом 100.
Если мы рассматриваем АЦП с равномерным квантованием, то длина всех ступенек будет одинаковой, в некоторых АЦП специально используются неравномерное квантование, но их мы пока не рассматриваем. Неравномерность ступенек в АЦП с равномерным квантование это одна из характеристик неидеальности, мы называем ее нелинейностью.
Нелинейность АЦП
Нелинейность АЦП — это отличие реальной передаточной характеристики от линейной.
Линейная система передает входной сигнал на выход, без изменения его формы, возможно усиление или аттенюация.
Нелинейная система искажает форму выходного сигнала. В том случае, когда характеристика отличается от прямой линии, форма пиков сигнала изменяется это называется нелинейным искажением, крайне нежелательно явление. При искажениях мы безвозвратно теряем информацию.
Для АЦП, желательно, чтобы в рабочем диапазоне входных сигналов формы передаточных характеристик аппроксимировались прямой, но на практике небольшие отклонения все же присутствуют, поэтому для всех АЦП производитель указывает параметры интегральной и дифференциальной нелинейности.
Шум квантования
В АЦП происходит округление реального значения аналогового сигнала. Точность представления, то насколько близок уровень квантования к реальному значению зависит от разрядности АЦП, количества бит.
Сигнал ошибки или разницы мы называем шумом квантования, хотя шумом его можно считать только в рамках математической модели, так как он зависит от сигнала.
Если мы квантуем непрерывный сигнал, то и шум квантования будет непрерывным. Если мы говорим о квантовании дискретного сигнала, то и на ошибки также будет дискретным. Понятно, что для того чтобы уменьшить шум квантования надо повышать разрядность АЦП, но из-за этого увеличивается стоимость, энергопотребление, могут понизиться другие характеристики.
Существует техника уменьшения влияния шума квантования без увеличения разрядности, и с ними вы можете ознакомиться самостоятельно при желании.
Джиттер
Джиттер это фазовый шум вызванный нестабильностью задающего генератора. Когда мы рассматриваем идеальный процесс дискретизации непрерывного сигнала, шаг временной сетке или период дискретизации неизменен, но в реальности импульсы задающего генератора могут идти не через равные промежутки времени, это приводит к тому что мы передаем устройству выборки и хранения не совсем то значение, которое должны были бы передать в случае идеально ровной временной сетки.
Эти отклонения, от так называемых реальных значений, также можно представить в виде дискретного шума. Нестабильность генераторов обычно измеряется в пика и фемпто секундах, поэтому на медленный АЦП она особо не влияет.
Шум квантования вносит гораздо больший вклад, но если сам сигнал изменяется очень быстро, если мы говорим о частотах дискретизации в сотни мегагерц и единицах гигагерц, то в этом случае уже джиттер может стать главной проблемой.
Цифро-аналоговый преобразователь
Цифро-аналоговый преобразователь — это устройство преобразующее входной цифровой сигнал в аналоговый.
На вход устройства поступают дискретные отсчеты в виде цифрового кода, которые затем преобразуются в напряжение. Напряжение это соответствует набору уровней, как и случае с АЦП, многие ЦАП, используют равномерный уровни при преобразовании.
Уровень напряжения остается неизменным до момента прихода следующего отсчета на вход, таким образом формируется ступенчатый непрерывный сигнал, который в дальнейшем может быть сглажен фильтром нижних частот.
Один из простейших видов ЦАП широтно-импульсный модулятор (ШИМ) он часто используется для управления скоростью электромоторов.
Источник: zvondozvon.ru