Какая математическая база нужна для Python, чем он хорош для новичков и какие задачи можно решить с помощью этого языка программирования
Python часто советуют изучать тем, кто никогда раньше не программировал. Одно из его преимуществ — универсальность, за счёт которой он используется профессионалами в разных областях: от журналистики до продакт-менеджмента. Его можно применять для решения рутинных задач: например, чтобы визуализировать большой объём данных или составлять списки дел и покупок. Автор и менеджер программы «Анализ данных» в Яндекс.Практикуме Анна Чувилина рассказала как оптимизировать свой быт и работу при помощи программирования, какие библиотеки (шаблоны решений) могут использовать новички и как выбрать курс по изучению Python. Материал подготовлен Академией Яндекса
Где используется язык Python || Области и сферы применения языка python
Почему Python советуют новичкам
Одно из главных преимуществ Python — низкий порог входа. Код на нём лаконичный и обычно сходу понятен даже тем, кто изучал другой язык. А подробная документация поможет разобраться в программировании с нуля.
Ресурсы для изучения Python:
- База книг по Python
- Habr
- Бесплатные курсы по Python на Kaggle
- Обучающие видео
Вокруг Python сформировались сообщества энтузиастов, которые пишут на этом языке. Например, в Москве есть группа Moscow Python: они проводят конференции и неформальные встречи и сотрудничают с крупными ИТ-компаниями.
Для Python существует объёмная система библиотек — готовых решений для тех или иных задач. Есть как алгоритмы для базовых математических операций, так и для сложных задач: например, распознавания картинок и звуков.
У языка много понятных приложений: его можно использовать для анализа данных и машинного обучения, бэкенда, веб-разработки, системного администрирования и игр. Конечно, при этом нужен разный набор навыков помимо программирования, но с Python можно начать осваивать почти любую предметную область.
Важно понимать, что для анализа данных язык программирования — это инструмент. Анализ данных можно проводить и в Excel, и на бумажке, а программирование — только один из вариантов того, как можно решать такие задачи.
Одно из распространённых приложений Python — работа с данными для продакт-менеджмента. Анализ данных позволяет менеджерам получать инсайты о поведении пользователей и принимать обоснованные решения. В крупных компаниях должности аналитиков и продакт-менеджеров обычно разделены, но в небольших проектах продактам нужно работать с данными самостоятельно.
Как понять, что вам нужен именно Python
Называть его «убийцей Excel» — некорректно. Многие команды и компании в России ведут весь учёт в обычных таблицах, и им этого достаточно. А Python нужен в тот момент, когда речь идет про действительно большие объемы данных. Например, у Яндекс.Музыки множество платящих пользователей, и их действия ежедневно генерируют какие-то события (лайки и прослушивания) — и терабайты данных. Хранить их в табличке Excel — из разряда фантастики.
В Python проще делать интерактивную и сложную визуализацию или проводить вычисления — для этого существуют библиотеки вроде Seaborn, matplot и Plotly. В Excel есть встроенный аппарат для решения математических задач (например, работы с данными), но для него нужно запоминать много названий операций — и работает он довольно неповоротливо. Кроме того, в Python можно быстрее и с разных сторон посмотреть на данные. Регрессию можно построить и в Excel, но зачем, когда в Python есть для этого готовые библиотеки?
Для статистических расчетов можно использовать R — люди с математическим образованием обычно осваивают его быстрее, чем Python. Однако большинству будет проще начать с Python.
Для разных задач анализа данных существуют коробочные решения. Например, Amplitude (для продуктовой аналитики), Mixpanel (для анализа поведения пользователей) Яндекс.Метрика и Google Analytics. При этом их использование часто платное.
Где применять Python, если вы не разработчик
Помимо анализа данных у языка есть и более простые приложения. Так, в учебниках по Python часто встречается задача с рассылками. В ней нужно создать рассылку, например, для людей, которые не сдали деньги на ремонт — найдя их данные в Excel-таблице. С помощью такого скрипта можно разослать письма по шаблону — и имена будут подставлены автоматически.
Python — про автоматизацию рутинных задач. Например, можно запустить скрипт, который подставляет пароли — и он автоматически откроет запароленные страницы или папки. Есть алгоритмы для того, чтобы автоматически создавать списки покупок или переименовывать фотографии определённым образом.
Люди, которые умеют писать код, придумывают такие вещи «на автомате». Например, маркетологи могут запустить скрипт для построения воронок продаж. А тестировщики — написать алгоритм, который будет подставлять данные в формы и тестировать приложения.
Если говорить про анализ данных, то многие начинают осваивать его из любопытства — чтобы найти инсайты в сфере, которую пока не исследовали. Например, можно определить социальные проблемы своего региона, анализируя опубликованную статистику. А если вы хотите через какое-то время попасть на стажировку или на работу, где нужен анализ данных, то такой кейс поможет вам показать свои навыки. Начать можно с простых, стандартных проектов, которые обычно предлагают тем, кто изучает Python.
Что нужно, чтобы выучить Python
Из математического аппарата кроме базовой арифметики для программирования ничего не нужно. Чтобы придумать, какой алгоритм использовать для решения той или иной задачи, важно структурное мышление — но это не математическая компетенция. Парадокс в том, что и развивать его нужно с помощью регулярной работы с задачами — важно быть готовым просидеть над, казалось бы, тривиальным заданием несколько часов и не отчаяться.
Для анализа данных, помимо школьной математики, понадобятся знания математической статистики и теории вероятности. Начинающему специалисту важнее всего освоить базовые понятия: уметь проверять гипотезы, знать, что такое доверительные интервалы, чем отличаются медиана и мода, понимать, как обозначать события и их вероятности.
Материалы по математике:
- Курс на Coursera
- Видеокурс по алгоритмам
- Статистика. Вероятность. Комбинаторика — Я. С. Бродский
Тем, кто хочет заниматься анализом данных (как профессионально, так и для себя), важно развить критическое мышление. Например, нужно самому выделять критерии для сравнения объектов: тут нет какого-то стандартного решения. Ещё важно сходу видеть закономерности и аномалии в данных.
Изучать программирование и анализ данных можно и самому — я не рекомендую обращаться к платным курсам до тех пор, пока вы не посмотрели бесплатный контент.
Во-первых, он служит для профориентации: чтобы лучше понять, какие приложения есть у программирования или анализа данных для разных профессий. Во-вторых, даёт понять, сколько сил и времени нужно будет прикладывать для изучения.
Преимущества обучения на курсах в том, что на них можно получить чётко сформулированные практические задачи. Также преподаватели могут рассказать о том, как общаться с заказчиком и уточнять у него необходимую информацию.
Как выбрать образовательную программу
Выбирая образовательную программу, важно обратить внимание на преподавателей, которые его ведут или создавали для него контент, — можно посмотреть их профили на Facebook и узнать про профессиональный опыт.
Что касается цены, то по моему опыту, качество курса не всегда с ней коррелирует — поэтому ориентироваться нужно на то, сколько вам комфортно потратить на обучение.
Также стоит чётко сформулировать то, что хочется получить в результате, — и сделать это ключевым критерием для выбора. Бывают случаи, когда студенты приходят на курс по анализу данных для менеджеров и ожидают занятия по программированию — а их учат общаться с аналитиками и рассказывают общие вещи про то, как внедрять анализ данных. Зачастую проблема не в плохой организации или преподавателях, а в том, что человек сам не проверил, соответствует ли программа его задачам. Правило с постановкой целей работает не только на выбор программы, но и на обучение в целом — не стоит осваивать язык программирования, чтобы поставить галочку.
Источник: zeh.media
Что должен знать Python разработчик в 2020 году
29.01.2020
23297
Рейтинг: 5 . Проголосовало: 13
Вы проголосовали:
Для голосования нужно авторизироваться
- Общие знания, которые нужны каждому Python разработчику
- Что должен знать Python Developer, работающий в сфере Data Science
- Python BackEnd Developer
- Python Developer в сфере DevOps
- Automation QA Engineer (Python)
- Desktop, Mobile, Game Python Developer
- Итоги
Добрый день, дорогие читатели блога ITVDN! Предлагаем вашему вниманию новую публикацию в рубрике “Что должен знать разработчик. ”, в которой мы пишем о самых популярных IT-профессиях. Ранее уже были опубликованы обзоры по FrontEnd и .NET. В этот раз в центре внимания язык Python. В каких сферах он успешно применяется, а в каких буквально незаменим?
Какими знаниями нужно обладать, чтобы стать, к примеру, Python BackEnd разработчиком? Все это вы узнаете в нашей статье. Приятного чтения!
В последние годы язык программирования Python стремительно набирает популярность. По данным Stack Overflow Developer Survey 2019, в котором приняли участие более 87 тысяч IT специалистов из разных стран, Python в 2019 году опередил даже таких постоянных и несомненных лидеров как Java, С# и С++. Сейчас он широко используется в Data Science (машинное обучение, анализ данных, визуализация), разработке встроенного программного обеспечения и в реализации серверной части веб-приложений. Также при помощи Python можно создавать игры, десктопные и мобильные приложения, писать тесты для ПО, а также упрощать администрирование ОС.
Как видите, сферы применения довольно обширны. Мы постараемся затронуть самые популярные, в которых Python используется в качестве основного средства программирования.
Начнем с технологий, которые должен знать любой Python-разработчик вне зависимости от специализации.
Python
Многие сходятся во мнении, что язык программирования Python — один из самых легких для изучения, его часто рекомендуют в качестве первого языка начинающим программистам. В то же время это высокоуровневый язык программирования общего назначения, с большим потенциалом повышения производительности программиста, скорости разработки и читаемости кода. Каждый Python-девелопер должен владеть таким набором знаний:
- Синтаксис языка Python: типы данных, строки и символы, операции с целыми и вещественными числами, отступы, условные и циклические конструкции, функции, списки, словари, классы, файловый ввод-вывод, логические операции и операции сравнения.
- Популярные библиотеки и фреймворки. Этот пункт зависит от выбранного IT-направления. К примеру, если вы планируете себя реализовать в веб-разработке, отличным выбором станет библиотека Requests, которая облегчит процессы составления HTTP-запросов, также будут полезны фреймворки Django и Flask. Если же вас увлекает машинное обучение, то Theano, TensorFlow, Keras и другие библиотеки помогут с построением и тренировкой нейронных сетей.
- IDE и редактором кода. Проекты лучше создавать в интегрированной среде разработки (IDE) или в редакторе кода. Это позволяет сделать написание кода максимально удобным: подсветка синтаксиса, автодополнение, инструменты сборки, возможность отладки код и прочее. Самыми популярными платформами являются PyCharm, WingWare IDE, Komodo.
Открытым остается и вопрос, какую версию Python стоит изучать: 2.x либо 3.х? Согласно информации из официального источника разработчиков python.org, в 2020 году прекращается поддержка Python 2.7. Соответственно, стоит сконцентрировать усилия на изучении именно версии 3.х.
Разработчик должен иметь глубокие знания языка Python, понимать и уметь применять на практике принципы объектно-ориентированного программирования (ООП).
Английский язык
Знание английского языка — естественное требование для каждого разработчика в IT, поскольку большинство новых сведений о технологиях, курсы, учебные и справочные материалы появляются в первую очередь на английском. Для работы в команде разработчиков обычно знаний языка на уровне чтения технической документации и комментирования кода вполне достаточно, однако если вы планируете самостоятельно вести переговоры и переписку с иностранным заказчиком, ваш уровень должен быть выше.
Git
Итак, какими технологиями необходимо владеть, чтобы стать Data Scientist?
Линейная алгебра и математический анализ
Data Science — это как раз та область, в которой без знаний математики ну никак. Работа с колоссальным объемом данных предусматривает в обязательном порядке применение аппарата линейной алгебры. А это матрицы, векторы, линейные уравнения, различные алгоритмы классификации и кластеризации, которые широко используются (подробнее в следующих разделах). Также необходимо знать оптимизацию средствами матанализа.
Статистика
Наука, которая применяет совокупность методов и приемов по сбору, обработке, представлению и анализу числовых данных, чтобы впоследствии на их основании сделать те или иные выводы.
Статистика содержит такие важные разделы, как: выборка, распределение частот, среднее значение, взвешенное среднее значение, медиана, вероятность, распределения вероятностей, тестирование значимости, а также ряд других тем и понятий. В интернете есть множество хороших англоязычных курсов, которые помогут освоить разделы статистики, которые обязательны для специалиста Data Science.
Библиотеки и дополнительные инструменты Python
Для всевозможных математических вычислений используется Python, а точнее — его библиотеки. К примеру, Matplotlib и Seaborn используются при необходимости визуализации данных, NumPy для работы с уже упомянутой линейной алгеброй. Для научных вычислений прибегают к использованию SciPy. Pandas позволяет выполнять быстрый анализ, очистку и подготовку данных из разных источников — Excel, SQL, веб-страницы, файлы CSV. Таким образом, библиотеки Python предоставляют отличный набор для анализа данных и визуализации.
Среди дополнительных инструментов особого внимания заслуживает Jupyter Notebook, который позволяет создавать очень наглядные и информативные аналитические отчеты путем совместного хранения кода, иллюстраций, комментариев, формул и графиков.
Базы данных
Поскольку работа Data Scientist-а плотно связана с обработкой большого количества информации, очевидно, что без баз данных тут не обойтись. Необходимо знать, как извлекать и обрабатывать данные, уметь писать и выполнять сложные запросы.
Существуют реляционные базы данных (так называемые, SQL базы данных) которые используют структурированный язык запросов, и нереляционные (NoSQL), которые предлагают динамическую структуру для определения и обработки данных. К системам управления баз данных (СУБД) первого типа относят MySQL, PostgreSQL, Microsoft SQL Server, Oracle. Ко второму типу — MongoDB, Cassandra, BigTable, Redis, RavenDB и прочие.
Несмотря на широкое распространение NoSQL, специалисты Data Science все же используют SQL технологии, поскольку зачастую работают именно с упорядоченным множеством данных (медицинские карты пациентов, транзакции клиентов и т. д.). Здесь наилучшим выбором станет PostgreSQL/MySQL/SQL Server.
Машинное обучение
Это ответвление искусственного интеллекта, основная идея которого состоит в следующем: компьютер должен не просто использовать заранее написанный алгоритм, а самостоятельно обучаться решению поставленной задачи (например, задачи определения символов по отсканированному изображению текста, опознавания лиц и голосов, подборки видеороликов на YouTube с учетом просмотренных ранее).
Минимальный набор базовых алгоритмов машинного обучения, который необходимо знать: линейная регрессия, логистическая регрессия, SVM (метод опорных векторов), random forest (“случайный лес”), дерево принятия решений, Gradient Boosting, РСА (метод главных компонент), k-means (кластеризация методом k-средних), k-NN (классификация методом k-ближайших соседей), ARIMA (интегрированная модель авторегрессии скользящего среднего).
Видео курсы по схожей тематике:
Источник: itvdn.com
Python и веб-разработка: краткое руководство
За последние несколько лет популярность Python резко возросла, и он даже превзошел Java. С развитием машинного обучения, анализа данных и веб-приложений многие разработчики стали чаще использовать данный язык программирования, так как он обладает множеством полезных библиотек, простым синтаксисом и мобильностью. Без сомнения, сейчас наиболее подходящее время, чтобы научиться работать с Python.
Итак, в данной статье мы ответим на следующие вопросы:
- Веб-разработка — что это?
- Почему Python подходит для веб-разработки?
- Веб-фреймворки Python
- Библиотеки Python
- Дорожная карта для веб-разработки с использованием Python
- Как создать первое приложение в Python
- Заключение
Веб-разработка — что это?
Скорее всего, новички зададутся вопросом, что же такое веб-разработка. Однако сложно определить точный термин, так как веб-разработка в широком смысле подразумевает создание и обслуживание сайтов. Как правило, веб-разработка включает все аспекты, которые связаны с пользователем: интерфейс, серверная часть и бизнес-логика.
Почему Python подходит для веб-разработки?
Преимущества разработки веб-приложений в Python:
- Простое обучение: Python — самый популярный язык программирования для новичков. Он опирается на общие выражения и пробелы, что позволяет писать значительно меньше кода по сравнению с Java или C++. К тому же, он обладает более низким барьером входа, так как напоминает повседневный язык. Поэтому вы с легкостью сможете понять код. Однако это не значит, что изучение Python будет легким в начале. Программирование — сложный процесс, но он научит вас быстро схватывать идеи.
- Обширная экосистема и библиотеки: Python предлагает большой спектр библиотечных инструментов и пакетов услуг. Таким образом, вы получите доступ к предварительно написанному коду с ускоренным временем на разработку приложений. Например, вы сможете воспользоваться Numpy и Pandas для математического анализа, Pygal для построения графиков и SLQALchemy для вложенных запросов. Python также обладает отличными веб-фреймворками — например, Django и Flask. Ниже мы расскажем о них более подробно.
- Быстрое прототипирование: по сравнению с другими языками программирования Python тратит меньше времени, поэтому вы сможете реализовать свои идеи намного быстрее. Более того, вы получите обратную связь и легко выполните итерации. Благодаря небольшому времени на разработку Python особенно подходит для стартапов. Поэтому они могут выйти на рынок значительно быстрее и получить конкурентное преимущество.
- Широкое распространение: Python — один из самых популярных языков программирования, поэтому он часто обновляется новыми функциями и библиотеками. Также Python обладает отличной документацией и поддержкой сообщества, что поможет начинающим разработчикам реализовать свои проекты.
Другие языки программирования для веб-разработки:
- Javascript широко известен в веб-разработке благодаря своей пригодности для бэкенда и фронтенда. Такие фреймворки JS, как React.js и Vue.j, подходят для разработки фронтенда, в то время как Express.js чаще используется для бэкенда.
- Java также достаточно популярный язык, который часто используют многие компании. Особой популярностью пользуется Java Spring, так как он обладает коллекцией библиотек и конфигураций. Благодаря такому набору возможностей вы сможете создавать серверные среды и развертывать приложения.
- Ruby часто применяется для серверных технологий, но по сравнению с Javascript и Python считается более устарелым инструментом. Язык предполагает, что во время написания кода вам придется соблюдать определенную структуру.
- PHP также является хорошо известным языком в веб-разработке, хотя за последние несколько лет его популярность снизилась. Он предлагает множество фреймворков и интеграций, но многие разработчики считают, что его дизайн недостаточно проработан, что может привести к написанию плохого кода.
Веб-фреймворки Python
Что такое фреймворки и почему они так важны? Веб-фреймворк — это набор пакетов и модулей, состоящих из предварительно написанного стандартизированного кода. Таким образом, код обеспечивает разработку веб-приложений, делая этот процесс быстрее и проще, а программы более надежными и масштабируемыми. Другими словами, фреймворки уже обладают встроенными компонентами, которые упрощают вашу работу над проектом.
Веб-фреймворки Python используются только в бэкенде для серверных технологий, помогая в маршрутизации URL-адресов, HTTP-запросах, доступе к базам данных и веб-безопасности. Фреймворк не считается обязательным, однако мы рекомендуем использовать его, так как он поможет разработать сложные приложения за достаточно короткое время.
Какие веб-фреймворки Python наиболее популярны?
Django — это быстрый, безопасный и масштабируемый веб-фреймворк Python, который предлагает высокий уровень и открытый исходный код. Django обладает мощной поддержкой сообщества и подробной документацией.
Фреймворк включает комплексный пакет, в котором вы получите панель управления, интерфейс базы данных и структуру каталога после создания приложения. Кроме того, он включает большое количество функций, поэтому вам не придется добавлять отдельные библиотеки. Аутентификация пользователей, механизм шаблонов, маршрутизация, миграция схемы базы данных и т.д. — все это примеры возможностей, которые предлагает фреймворк.
Django отличается гибкостью. Он позволяет работать как с минимально жизнеспособным продуктами, так и с более развитыми компаниями. Instagram, Dropbox, Pinterest и Spotify — все эти компании также используют Django.
Flask считается микрофреймворком, который представляет минималистичный веб-фреймворк. Но по сравнению с Django он не обладает такими функциями, как механизм веб-шаблонов, авторизация учетной записи и аутентификация.
Flask отличается простотой в использовании. Поэтому вы можете добавить расширения и библиотеки, которые вам нужны при написании кода.
Идея Flask заключается в том, что данная платформа предоставляет только компоненты, необходимые для создания приложения. Некоторые функции включают встроенный сервер разработки, отправку запросов Restful, обработку Http-запросов и многое другое. Flask также является распространенным и мощным веб-фреймворком, поскольку он используется крупными компаниями, такими как Netflix, Linkedin и Uber.
Другие известные фреймворки
Возможно, вы зададите вопрос — какой же фреймворк стоит выбрать? Но мы не сможем дать вам однозначный ответ. Для начала, оцените свой уровень веб-разработчика. Если вы обладаете большим опытом, то стоит отдать предпочтение продвинутым программам. Однако, если вы начинающий разработчик, то попробуйте использовать фреймворк со встроенной технической поддержкой, например Django.
Кроме того, спросите себя, хотите ли вы создать «основополагающую» кодовую базу или же сформировать её основы? Если вы предпочитаете первый вариант, то стоит использовать Django, а если второй, то Flask. Но стоит отметить, что оба инструмента обладают одинаковой функциональностью.
Библиотеки Python для веб-разработки
Ниже представлено несколько полезных библиотек Python для веб-разработки:
- Если вам когда-нибудь понадобится поисковой робот, чтобы извлечь данные для приложения, Scrapy отлично подойдет для этого. Данная библиотека часто используется для очистки, интеллектуального анализа данных, автоматизированного тестирования и многого другого.
- Zappa — это мощная библиотека для разработки бессерверного приложения на AWS Lambda.
- Requests — это библиотека, которая позволит легко отправлять HTTP-запросы. Она используется для связи с приложением, позволяя вам получить HTML-страницы или данные.
- Dash — другая полезная библиотека для разработчиков веб-приложений, связанных с визуализацией данных. Фреймворк предлагает диаграммы, графики, информационные панели и многое другое.
Дорожная карта для веб-разработки с использованием Python
Шаг 1:HTML + CSS
В начале веб-разработки стоит изучить HTML и CSS, которые являются основой обучения при создании сайтов. Гораздо важнее научиться структурировать адаптивные статические страницы, чтобы начать свой путь веб-разработки. Также полезно узнать про такие понятия, как Интернет, HTTP, браузер, DNS, хостинг и многое другое.
Вы можете также изучить такие CSS-фреймворки, как Materialize или Bootstrap. Они значительно ускорят вашу работу.
Шаг 2: Javascript
Следующий шаг, который необходимо сделать — это изучить Vanilla Javascript. Вам стоит ознакомиться с такими базовыми концепциями, как типы данных, переменные, общие соглашения, работа со строками, арифметика, управляющие операторы, циклы и т.д. Знание этих основ упростит применение Javascript к коду на стороне клиента.