Что можно отнести к источникам в программе electronics workbench

Открыть папку Ewb512. Щелчком мыши по элементу Wewb32 открывается поле компонентов.

На данном занятии используются следующие группы компонентов: источники (Sources); базовые компоненты (Basic); индикаторы (Indicators); приборы (Instruments). Щелчком мыши по обозначению указанной группы открывается библиотека элементов. Для составления электрической схемы необходимо мышью перетащить (при нажатой левой кнопке) изображение соответствующего элемента на поле. Двойным щелчком мыши по изображению элемента открывается диалоговое окно для установления необходимых параметров.

К числу источников, являющимися в Electronics Workbench идеальными, относятся: источник постоянного напряжения (Battery); источник постоянного тока (DC Current Source); источник переменного напряжения (AC Voltage Source); источник переменного тока (AC Current Source).

Из линейных элементов в данных работах используется резистор и конденсатор, с изменяющимися значениями сопротивления и емкости, Из группы индикаторов используются вольтметр (Voltmeter) и амперметр (Аmmeter), в диалоговом окне которого устанавливается вид измеряемого напряжения (тока): постоянный (DC) либо переменный (АС), а также величина внутреннего сопротивления. К числу используемых приборов относятся: генератор (Function Generator), мультиметр (Multimeter) и осциллограф (Oscilloscope).

New electronics workbench tour (built Nov 2022).

Для индикации результата измерения необходимо перевести переключатель «0-1», находящийся в правом верхнем углу, в положение «1».

Лабораторная работа № 1

Тема: «Исследование масштабных измерительных преобразователей»

Цель занятия: научиться составлять электронные измерительные схемы с помощью компьютерной программы Electronics Workbench, проводить измерения напряжения (силы тока) в цепях делителей напряжения (шунтов) и рассчитывать коэффициенты деления (шунтирования).

Содержание занятия:

1. Исследование делителей напряжения в схемах измерения напряжения.

2. Исследование шунтов в схемах измерения силы тока.

Аппаратура и материалы: персональные компьютеры и программа «Electronics Workbench». При выполнении работы выполнять требования по технике безопасности эксплуатации аппаратуры, подключенной к сети 220 В.

Методика выполнения работы

1. Исследование делителей напряжения в схемах измерения

Собрать схему, представленную на рисунке 1.1. Напряжение источника Еист =100 kV. Делитель напряжения состоит из резисторов: верхний и нижний , где N – номер рабочего места. Входное сопротивление вольтметра . Экспериментально полученное показание вольтметра Uv сравнить с теоретическим значением напряжения U 2 на резисторе R 2, рассчитанным по формуле: . Оценить погрешность измерения .

Рисунок 1.1 Рисунок 1.2

Воспользуйтесь поиском по сайту:

studopedia.org — Студопедия.Орг — 2014-2023 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с) .

ECE 1 — Building My Electronics Workbench

Источник: studopedia.org

1.2. Компоненты Electronics Workbench

Для операций с компонентами на общем поле Electronics Workbench выделены две области: панель компонентов и поле компонентов (рис.1.1).

Панель компонентов состоит из пиктограмм полей компонентов, поле компонентов – из условных изображений компонентов.

Щелчком мышью на одной из одиннадцати пиктограмм полей компонентов, расположенных на панели, можно открыть соответствующее поле. На рис. 1.1 открыто поле пассивных компонентов (Passive). Для описания компонентов более логичным является разделение их по типам, чему мы будем следовать в дальнейшем, давая в каждом случае ссылку на поле, в котором расположен компонент.

На рис. 1.2 показаны все имеющиеся в Electronics Workbench поля компонентов. Эта картинка получена искусственно, на самом деле при работе может быть открыто только одно поле компонентов. Перейдем теперь к описанию имеющихся в программе компонентов.

В библиотеки элементов программы Electronics Workbench входят аналоговые, цифровые и цифро-аналоговые компоненты.

Все компоненты можно условно разбить на следующие группы:

узлы комбинационного типа,

узлы последовательного типа,

Базовые компоненты

Соединяющий узел

Узел применяется для соединения проводников и создания контрольных точек. К каждому узлу может подсоединяться не более четырех проводников.

После того, как схема собрана, можно вставить дополнительные узлы для подключения приборов.

Заземление

Компонент «заземление» имеет нулевое напряжение и таким образом обеспечивает исходную точку для отсчета потенциалов.

Не все схемы нуждаются в заземлении для моделирования, однако любая схема, содержащая:

должна быть обязательно заземлена, иначе приборы не будут производить измерения или их показания окажутся неправильными.

Читайте также:
Найдите ошибку в программе program var a b c d f p integer

 Будьте внимательны при заземлении трансформаторов и управляемых источников.

Источники

Все источники в Electronics Workbench идеальные. Внутреннее сопротивление идеального источника напряжения равно нулю, поэтому его выходное напряжение не зависит от нагрузки. Идеальный источник тока имеет бесконечно большое внутреннее сопротивление, поэтому его ток не зависит от сопротивления нагрузки.

 Функциональный генератор можно использовать в качестве идеального источника напряжения.

Источник постоянного напряжения

ЭДС источника постоянного напряжения или батареи измеряется в Вольтах и задается производными величинами (от мкВ до кВ). Короткой жирной чертой в изображении батареи обозначается вывод, имеющий отрицательный потенциал по отношению к другому выводу.

 Батарея в Electronics Workbench имеет внутреннее сопротивление, равное нулю, поэтому, если необходимо использовать две параллельно подключенные батареи, то следует включить последовательно между ними небольшое сопротивление (например, в 1 Ом).

Источник постоянного тока

Ток источника постоянного тока (direct current) измеряется в Амперах и задается производными величинами (от мкА до кА). Стрелка указывает направление тока (от «+» к «-«).

Источник переменного напряжения

Действующее значение (root-mean-square – RMS) напряжения источника измеряется в Вольтах и задается производными величинами (от мкВ до кВ). Имеется возможность установки частоты и начальной фазы. Напряжение источника отсчитывается от вывода со знаком «-«.

Действующее значение напряжения VRMS. вырабатываемое источником переменyого синусоидального напряжения, связано с его амплитудным значением VPEAK следующим соотношением:

.

Источник переменного тока

Действующее значение тока источника измеряется в Амперах и задается производными величинами (от мкА до кА). Имеется возможность установки частоты и начальной фазы. Ток источника отсчитывается от вывода со знаком «-«.

Действующее значение тока IRMS, вырабатываемое источником переменного синусоидального тока, связано с его амплитудным значением 1РЕАК следующим соотношением:

.

Генератор тактовых импульсов

Генератор вырабатывает последовательность прямоугольных импульсов. Можно регулировать амплитуду импульсов, коэффициент заполнения (скважность) и частоту следования импульсов. Отсчет амплитуды импульсов генератора производится от вывода, противоположного выводу «+».

Источник напряжения, управляемый напряжением

Выходное напряжение источника напряжения, управляемого напряжением, зависит от входного напряжения, приложенного к управляющим зажимам.

Отношение выходного напряжения к входному определяется коэффициентом пропорциональности Е, который задаётся в мВ/В, В/В и кВ/В:

,

где vout – выходное напряжение источника,

vin- входное напряжение источника.

Источник тока, управляемый напряжением

Величина тока источника тока, управляемого напряжением, зависит от входного напряжения, приложенного к управляющим зажимам. Отношение выходного тока к управляющему напряжению – коэффициент G, измеряется в единицах проводимости (1/Ом или сименс):

,

где IOUT. – выходной ток источника,

VIN – напряжение, приложенное к управляющим зажимам источника.

Источник тока, управляемый током

Величина тока источника тока, управляемого током, зависит от величины входного тока (тока в управляющей ветви). Входной и выходной токи связаны коэффициентом пропорциональности F, который определяет отношение выходного тока к току в управляющей ветви. Коэффициент F задается в мА/А, А/А и кА /А.

,

где IOUT – выходной ток источника,

IIN — входной ток источника.

Источник напряжения, управляемый током

Величина напряжения источника напряжения, управляемого током, зависит от величины входного тока (тока в управляющей ветви). Входной ток и выходное напряжение об разуют параметр, называемый передаточным сопротивлением Н, который представляет собой отношение выходного напряжения к управляющему току. Передаточное сопротивление имеет размерность сопротивления и задается в мОм, Ом и кОм.

,

где VOUT – выходное напряжение источника,

IIN – входной ток источника.

 При подключении управляемых источников нужно соблюдать полярность и направление токов в подключаемых цепях. Стрелка указывает направление тока от «+» к «-«, значком «+” указан положительный вывод источника напряжения.

Источник напряжения +5В

Используя этот источник напряжения, можно устанавливать фиксированный потенциал узла 5 В или уровень логической единицы.

Источник сигнала «логическая единица»

При помощи этого источника устанавливают уровень логической единицы в узле схемы.

Источник: studfile.net

Базовые компоненты Electronics Workbench

Узел применяется для соединения проводников и создания контрольных точек. К каждому узлу может подсоединяться не более четырех проводников.

Читайте также:
Узнать кто подключен к моему Wi-Fi программа

После того, как схема собрана, можно вставить дополнительные узлы для подключения приборов.

Компонент «заземление» имеет нулевое напряжение и, таким образом, обеспечивает исходную точку для отчета потенциалов.

Не все схемы нуждаются в заземлении для моделирования, однако любая схема, содержащая: операционный усилитель, трансформатор, управляемый источник, осциллограф, должна быть обязательно заземлена, иначе приборы не будут производить измерения или их показания окажутся неправильными.

Источник постоянного напряжения

ЭДС источника постоянного напряжения или батареи измеряется в вольтах и задается производными величинами (от мкВ до кВ).

Источник постоянного тока

Ток источника постоянного тока измеряется в амперах и задается производными величинами (от мкА до кА ). Стрелка указывает направление тока (от «+» к « — »).

Источник переменного напряжения

Действующее значение напряжения источника измеряется в вольтах и задается производными величинами (от мкВ до кВ). Имеется возможность установки частоты и начальной фазы. Напряжение источника отсчитывается от вывода со знаком «~».

Источник переменного тока

Действующее значение тока источника измеряется в амперах и задается производными величинами (от мкА до кА). Имеется возможность установки частоты и начальной фазы. Напряжение источника отсчитывается от вывода со знаком «~».

Сопротивление резистора измеряется в омах и задается производными величинами (от Ом до МОм).

Переменный резистор

Положение движка переменного резистора устанавливается при помощи специального элемента – стрелочки-регулятора. Для изменения положения движка необходимо нажать клавишу-ключ. Для увеличения значения положения движка необходимо одновременно нажать [ Shift] и клавишу-ключ, для уменьшения — клавишу-ключ.

Конденсатор

Емкость конденсатора измеряется в фарадах и задается производными величинами (от пФ до Ф).

Переменный конденсатор

Переменный конденсатор допускает возможность изменения величины емкости:

С = (начальное значение / 100) · коэффициент пропорциональности.

Катушка индуктивности

Индуктивность катушки измеряется в генри и задается производными величинами (от мкГн до Гн).

Катушка с переменной индуктивностью

Индуктивность катушки устанавливают, используя начальное ее значение и коэффициента пропорциональности, следующим образом:

L = (начальное значение / 100) · коэффициент пропорциональности.

Трансформатор

Трансформатор используется для преобразования напряжения U1 в напряжение U2. Коэффициент трансформации n равен отношению напряжения U1 на первичной обмотке к напряжению U2 на вторичной обмотке.

Электромагнитное реле может иметь нормально замкнутые или нормально разомкнутые контакты. Оно срабатывает, когда ток в управляющей обмотке превышает значение тока срабатывания Ion. Во время срабатывания происходит переключение пары нормально замкнутых контактов S2, S3 реле на пару нормально замкнутых контактов S2, S1 реле. Реле остается в состоянии срабатывания до тех пор, пока ток в управляющей обмотке превышает удерживающий ток Ihd. Значение тока Ihd должно быть меньше, чем Ion .

Ключ, управляемый напряжением

Ключ, управляемый напряжением, имеет два управляющих параметра: включающее и выключающее напряжения. Он замыкается, когда управляющее напряжение больше или равно включающему напряжению, и размыкается, когда оно равно или меньше, чем выключающее напряжение.

Ключ, управляемый током

Ключ, управляемый током, работает аналогично ключу, управляемому напряжением. Когда ток через управляющие выводы превышает ток включения, ключ замыкается; когда ток падает ниже тока выключения, ключ размыкается.

Мостовой выпрямитель

Мостовой выпрямитель предназначен для выпрямления переменного напряжения. При подаче на выпрямитель синусоидального напряжения среднее значение выпрямленного напряжения Udc можно приблизительно вычислить по формуле:

Udc = 0,636 ( Up — 1,4), где Up — амплитуда входного синусоидального напряжения.

Ток через диод может протекать только в одном направлении — от анода A к — катоду K. Состояние диода (проводящее и непроводящее) определяется полярностью приложенного к диоду напряжения.

Светоизлучающий диод

Светоизлучающий диод излучает видимый свет, когда проходящий через него ток превышает пороговую величину.

У тиристора помимо анодного и катодного выводов имеется дополнительный вывод управляющего электрода. Он позволяет управлять моментом перехода прибора в проводящее состояние. Вентиль отпирается, когда ток управляющего электрода превысит пороговое значение, а к анодному выводу не будет приложено положительное смещение. Тиристор остается в открытом состоянии, пока к анодному выводу не будет приложено отрицательное напряжение.

Читайте также:
Как в программе excel

Симистор способен проводить ток в двух направлениях. Он запирается при изменении полярности протекающего через него тока и отпирается при подаче следующего управляющего импульса.

Динистор – управляемый анодным напряжением двунаправленный переключатель. Динистор не проводит ток в обоих направлениях до тех пор, пока напряжение на нем не превысит напряжения переключения, тогда динистор переходит в проводящее состояние, его сопротивление становится равным нулю.

Операционный усилитель

Операционный усилитель предназначен для усиления сигналов. Он имеет обычно очень высокий коэффициент усиления по напряжению, высокое входное и низкое выходное сопротивление. Вход «+» является неинвертирующим, а вход « — » — инвертирующим. Модель операционного усилителя позволяет задавать параметры: коэффициент усиления, напряжения смещения, входные токи, входное и выходное сопротивления.

Входные и выходные сигналы ОУ должны быть заданы относительно земли.

Операционный усилитель с пятью выводами

ОУ с пятью выводами имеет два дополнительных вывода (положительный и отрицательный) для подключения питания.

Биполярные транзисторы

Биполярные транзисторы являются усилительными устройствами, управляемыми током. Они бывают двух типов: P-N-P и N-P-N.

Буквы означают тип проводимости полупроводникового материала, из которого изготовлен транзистор. В транзисторах обоих типов стрелкой отмечается эмиттер, направле­ние стрелки указывает направление протекания тока.

N-P-N транзистор

N-P-N транзистор имеет две n-области (коллектор С и эмиттер E) и одну p-область (базу В).

P-N-P транзистор

P-N-P транзистор имеет две p-области (коллектор С и эмиттер E) и одну n-область (базу В).

Полевые транзисторы (FET)

Полевые транзисторы управляются напряжением на затворе, то есть ток, протекающий через транзистор, зависит от напряжения на затворе. Полевой транзистор включает в себя протяженную область полупроводника n- или р- типа, называемую каналом. Канал оканчивается двумя электродами, которые называются истоком и стоком. Кроме канала n- или p- типа, полевой транзистор включает в себя область с противоположным каналу типом проводимости. Электрод, соединенный с этой областью, называют затвором.

Полевые транзисторы с управляющим p-n переходом (JFET)

Полевой транзистор с управляющим p-n переходом (JFET) – управляемый напряжением униполярный транзистор, в котором для управления током используется наведенное электрическое поле, зависящее от напряжения затвора.

Для n-канального полевого транзистора с управляющим p-n переходом чем более отрицательным будет напряжение, прикладываемое к затвору, тем меньше будет ток.

N-канальный полевой транзистор

В n-канальном полевом транзисторе затвор состоит из p-области, окруженной n-каналом.

P-канальный полевой транзистор

В p-канальном полевом транзисторе затвор состоит из n-области, окруженной p-каналом.

Полевые транзисторы на основе металлооксидной пленки

Управление током, протекающим через полевой транзистор на основе металлооксидной пленки (МОП-транзистор или МОSFЕТ), также осуществляется с помощью электрического поля, прикладываемого к затвору.

Обычно подложка контактирует с наиболее отрицательно смещенным выводом транзистора, подключенным к истоку. В трехвыводных транзисторах подложка внутренне соединена с истоком. N-канальный транзистор имеет следующее обозначение: стрелка направлена внутрь значка, а в p-канальном стрелка направлена наружу.

N-канальный и р-канальный МОП-транзисторы имеют различную полярность управляющих напряжений.

МОП-транзистор со встроенным каналом (Depletion MOSFETs)

Подобно полевым транзисторам с управляющим p-n переходом (JFET), МОП-транзистор со встроенным каналом состоит из протяженной области полупроводника, называемой каналом. Для p-канального транзистора эта область является полупроводником р-типа, для n-канального транзистора — n-типа. Свободные электроны от истока до стока должны пройти через этот узкий канал, заканчивающийся с обеих сторон электродами, называемыми истоком и стоком.

Металлический затвор МОП-транзистора изолирован от канала тонким слоем двуокиси кремния так, что ток затвора во время работы пренебрежимо мал. Чем более отрицательное напряжение затвор-исток приложено к n-канальному транзистору, тем больше канал обедняется электронами проводимости, ток стока при этом уменьшается. При значении напряжения затвор-исток Vgs(off) канал полностью объединяется и ток от истока к стоку прекращается. Напряжение Vgs(off) называется напряжением отсечки.

трехвыводной n -канальный MOSFET со встроенным каналом;

трехвыводной р-канальный MOSFET со встроенным каналом;

Источник: mc-plc.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru