Антивирусные программы вакцины описание

В качестве вакцин используются антигены разного происхождения, это могут быть живые и убитые бактерии, вирусы, анатоксины, а также антигены, полученные с помощью генной инженерии и синтетические.

От состава вакцин во многом зависят их иммунобиологические свойства, способность индуцировать специфический иммунный ответ. Однако некоторые составные части вакцин могут вызвать и нежелательные реакции, что следует учитывать при проведении иммунизации.

Существующее многообразие вакцин можно подразделить на две основные группы: на живые и убитые (инактивированные) вакцины. В свою очередь какждая из этих групп может быть разделена на подгруппы [11].

1. Живые вакцины — из аттенуированных штаммов возбудителя (штаммы с ослабленной патогенностью).

2. Убитые вакцины
— Молекулярные, полученные путем:
а) биологического синтеза;
б) химического синтеза.
— Корпускулярные:
а) из цельных микробов;
б) из субклеточных надмолекулярных структур.

В последние годы созданы синтетические молекулярные вакцины, а так же плазмидные (генные) вакцины.

Вирусы и вакцины | РАЗБОР

Постановка вопроса о предпочтительном выборе либо живых, либо убитых вакцин нам кажется неоправданной, так как в каждом конкретном случае эти принципиально разные препараты имеют свои преимущества и свои недостатки.

Традиционные вакцины

а) инактивированные

Инактивированные вакцины получают путем воздействия на микроорганизмы химическим путем или нагреванием. Такие вакцины являются достаточно стабильными и безопасными, так как не могут вызвать реверсию вирулентности. Они часто не трубуют хранения на холоде, что удобно в практическом использовании. Однако у этих вакцин имеется и ряд недостатков, в частности, они стимулируют более слабый иммунный ответ и требуют применения нескольких доз (бустерные иммунизации).

б) живые аттенуированнные

Хотя живые вакцины требуют специальных условий хранения, они продуцируют достаточно эффективный клеточный и гуморальный иммунитет и обычно требуют лишь одно бустерное введение. Большинство живых вакцин вводится парентерально (за исключением полиомиелитной вакцины).

На фоне преимуществ живых вакцин имеется и одно предостережение, а именно: возможность реверсии вирулентных форм, что может стать причиной заболевания вакцинируемого. По этой причине живые вакцины должны быть тщательно протестированы. Пациенты с иммунодефицитами (получающие иммуносупрессивную терапию, при СПИДе и опухолях) не должны получать такие вакцины.

в) анатоксины

Многие микроорганизмы, вызывающие заболевания у человека, опасны тем, что выделяют экзотоксины, которые являются основными патогенетическими факторами заболевания (например, дифтерия, столбник). Анатоксины, используемые в качестве вакцин, индуцируют специфический иммунный ответ. Для получения вакцин токсины чаще всего обезвреживают с помощью формалина.

Ниже (табл. 15) приведена сравнительная характеристика вакцин [11], из которой следует, что инактивированные вакцины более стабильны, менее реактогенны, на их основе можно конструировать многокомпонентные вакцины, хотя в то же время по иммуногенности они уступают живым вакцинам.

Антивирус. Вакцинация от гриппа. В Якутии свыше 400 тысяч человек получили вакцину против гриппа

Таблица 15. Факторы, влияющие на иммунный ответ на антиген

Характеристика Убитые (химические) Живые
Иммуногенность ++ +++
Реактогенность +(+) ++(+)
Опасность поствакцинальных осложнений:
онкогенная
заражение микробами-контаминантами

+(–)
++
Стандартность ++ +
Возможность применения стимуляторов (адъювантов) +++
Возможность применения в ассоциированных препаратах +++ +(+)
Стабильность при хранении +++ +
Возможность применения массовых методов иммунизации ++ ++(+)
Возможность массового производства +(+) ++

Примечания: 0> — признак не выражен, +> — слабо выражен, ++ — выражен, +++ — сильно выражен, (+) — тенденция в сторону усиления признака.

Новое поколение вакцин

Использование новых технологий позволило создать вакцины второй генерации.

Рассмотрим подробнее некоторые из них:

а) конъюгированные

Некоторые бактерии, вызывающие такие опасные заболевания, как менингиты или пневмонию (гемофилюс инфлюэнце, пневмококки), имеют антигены, трудно распознаваемые незрелой иммунной системой новорожденных и грудных детей. В конъюгированных вакцинах используется принцип связывания таких антигенов с протеинами или анатоксинами другого типа микроорганизмов, хорошо распознаваемых иммунной системой ребенка. Протективный иммунитет вырабатывается против конъюгированных антигенов.

На примере вакцины против гемофилюс инфлюэнце (Hib-b) показана эффективность в снижении заболеваемости Hib-менингитами детей до 5-ти лет в США за период с 1989 по 1994 г.г. с 35 до 5 случаев.

б) субъединичные вакцины

Субъединичные вакцины состоят из фрагментов антигена, способных обеспечить адекватный иммунный ответ. Эти вакцины могут быть представлены как частицами микробов, так и получены в лабораторных условиях с использованием генно-инженерной технологии.

Примерами субъедиинчных вакцин, в которых используются фрагменты микроорганизмов, являются вакцины против Streptococcus pneumoniae и вакцина против менингококка типа А.

Рекомбинантные субъединичные вакцины (например, против гепатита B) получают путем введения части генетического материала вируса гепатита B в клетки пекарских дрожжей. В результате экспрессии вирусного гена происходит наработка антигенного материала, который затем очищается и связывается с адъювантом. В результате получается эффективная и безопасная вакцина.

в) рекомбинантные векторные вакцины

Вектор, или носитель, — это ослабленные вирусы или бактерии, внутрь которых может быть вставлен генетический материал от другого микроорганизма, являющегося причинно-значимым для развития заболевания, к которому необходимо создание протективного иммунитета. Вирус коровьей оспы используется для создания рекомбинантных векторных вакцин, в частности, против ВИЧ-инфекции. Подобные исследования проводятся с ослабленными бактериями, в частности, сальмонеллами, как носителями частиц вируса гепатита B. В настоящее время широкого применения векторные вакцины не нашли.

3.1. Компоненты вакцин

Как известно, основу каждой вакцины составляют протективные антигены, представляющие собой лишь небольшую часть бактериальной клетки или вируса и обеспечивающие развитие специфического иммунного ответа. Протективные антигены могут являться белками, гликопротеидами, липополисахаридобелковыми комплексами. Они могут быть связаны с микробными клетками (коклюшная палочка, стрептококки и др.), секретироваться ими (бактериальные токсины), а у вирусов располагаются преимущественно в поверхностных слоях суперкапсида вириона [11].

Поскольку для создания вакцин необходимо получение протективного антигена в достаточных количествах, то, прежде всего, нарабатываются большие объемы биомассы (культивируемые бактерии, вирусы). Далее производится выделение и очистка протективного антигена, причем в зависимости от условий это может быть как живая биомасса, так и инактивированная. Для инактивации используют формалин, фенол, перекись водорода, тепло, УФО-облучение и т.д.

Выделение и очистка протективного антигена также сопряжены с физическими или химическими методами воздействия, что определяется в основном свойствами антигена. Это могут быть методы изоэлектрического осаждения кислотами и щелочами, высаливание нейтральными солями, осаждение спиртом, сорбция и элюция, ультрафильтрация, колоночная хроматография и т.д.

Важно, что при всех указанных действиях должна максимально сохраняться первоначальная структура протективного антигена и в то же время должна быть получена максимальная степень чистоты препарата [11].

Несмотря на постоянное совершенствование вакцин, существует целый ряд обстоятельств, изменение которых в настоящий момент невозможно. К ним относятся следующие: добавление к вакцине стабилизаторов, наличие остатков питательных сред, добавление антибиотиков и т.д. Известно, что вакцины могут быть разными и тогда, когда они выпускаются разными фирмами. Кроме того, активные и инертные ингредиенты в разных вакцинах могут быть не всегда идентичными (для одинаковых вакцин).

Консерванты, стабилизаторы, антибиотики

Эти компоненты вакцин, анатоксинов и иммуноглобулинов используются для ингибиции и предотвращения роста бактерий в вирусных культурах, для стабилизации антигенов. Для лиофилизации используют лактозу, сахарозу, человеческий альбумин, мальтозу и др. В качестве консервантов наиболее часто в отечественных вакцинах используют меркуротиолят (мертиолят или тимеросал), стабилизатора — раствор хлористого магния. Наряду с этим в зарубежных вакцинах используют формальдегид, гидрометиламинометан, фенол, феноксиэтанол и др.

Читайте также:
Написать программу которая выводит таблицу квадратов

Аллергические реакции могут иметь место, если реципиент чувствителен к одной из этих добавок (тимеросал или мертиолят, фенолы, альбумин, глицин, неомицин).

Растворители вакцин

В качестве растворителей могут использоваться стерильная вода, физиологический раствор, раствор, содержащий протеин или другие составляющие, происходящие из биологических жидкостей — сывороточные протеины.

Адъюванты

Многие антигены вызывают субоптимальный иммунологический ответ. Усиление иммуногенности включает связывание антигенов с различными субстанциями или адъювантами (например, фосфат алюминия или гидроокись алюминия).

При создании вакцин учитывается способ их введения. Так, в препаратах для парентерального введения целесообразно использование адъювантов и консервантов, а для энтерального применения — кислотоустойчивое покрытие.

В технологии создания вакцин предусматривается стерилизация растворов антигенов. С этой целью используются термическая обработка, облучение, фильтрация и т.п. Безусловно все эти воздействия не должны повлиять на сохранность протективного антигена и его количество [11].

Таким образом, создание современных вакцин — это высокотехнологичный процесс, использующий достижения во многих отраслях знаний.

3.2. Критерии эффективных вакцин

Актуальной задачей современной вакцинологии является постоянное совершенствование вакцинных препаратов. Эксперты международных организаций по контролю за вакцинацией разработали ряд критериев эффективных вакцин, которые соблюдаются всеми странами-производителями вакцин. Перечислим некоторые из них (Табл. 16)

Таблица 16. Некоторые критерии эффективных вакцин
(Janeway C.A., et al., 1996)

Безопасность Вакцины не должны быть причиной заболевания или смерти
Протективность Вакцины должны защищать против заболевания, вызываемого «диким» штаммом патогена
Поддержание протективного иммунитета Защитный эффект должен сохраняться в течение нескольких лет
Индукция нейтрализующих антител Нейтрализующие антитела необходимы для предотвращения инфицирования таких клеток
Индукция протективных
Т-клеток
Патогены, размножающиеся внутриклеточно, более эффективно контролируются с помощью Т-клеточно-опосредованного иммунитета
Практические соображения Относительно низкая цена вакцины,
легкость применения,
широкий эффект

Другой вопрос, который следует иметь ввиду при реализации любых программ массовых иммунизаций — это соотношение между безопасностью вакцин и их эффективностью. В программах иммунизации детей против инфекций имеется конфликт между интересом индивидуума (вакцина должна быть безопасна и эффективна) и интересом общества (вакцина должна вызывать достаточный протективный иммунитет). К сожалению, на сегодняшний день в большинстве случаев частота осложнений вакцинации тем выше, чем выше ее эффективность. Авторы такой концепции приводят соответствующий пример — эффективной, но довольно реактогенной паротитной вакцины, содержащей штамм Urabe Am9, и менее эффективной, содержащей штамм Jeryl Lynn [130]. В результате эксперты по практике иммунизации в США пришли к заключению, что нет «вакцин совершенно безопасных или совершенно эффективных» («Рекомендации по иммунизации» — ACIP., 1994).

В настоящее время существуют определенные требования к вакцинам:

1. Вакцина должна быть безопасной.
2. Вакцина должна индуцировать протективный иммунитет с минимальными побочными эффектами для большинства получивших ее.
3. Вакцина должна быть иммуногенной, т.е. должна вызывать достаточно сильный иммунный ответ.
4. Вакцина должна индуцировать «правильный» (необходимый) тип иммунного ответа. Когда микроорганизмы проникают в организм человека, они могут вызвать заболевание разными путями, и разные отдела имунной системы отвечают за эффективную борьбу с ними. Вакцины должны стимулировать специфический иммунный ответ, который эффективно защитит от инфекции.
5. Вакцины должны быть стабильны в течение срока хранения. Многие инактивированные вакцины проще для хранения, особенно если они в сухом виде и растворяются перед введением. Живые аттенуированные вакцины для сохранения их стабильности требуют охлаждения на всем протяжении пути от завода-изготовителя до клиники.

3.3. Условия эффективной вакцинации

На сегодняшний день эффективной считается та вакцинация, в результате которой развивается длительная защита вакцинируемого от инфекции. Ряд требований эффективной вакцинации перечисляются ниже.

Источник: antibiotics.ru

Виды вакцин от COVID-19: какую выбрать

Сегодня поставить прививку от можно с использованием нескольких препаратов. Какие виды вакцин от ковида применяются в нашей стране? Чем они отличаются друг от друга? Какие прививки ставят в других странах? Давайте разберемся в этих вопросах.

Российские типы вакцин от ковида

  • Векторные. Эти вакцины являются . Они созданы с использованием гена одного из белков вируса. К векторным препаратам относятся «Спутник V» и «Спутник Лайт». Они обеспечивают эффективную выработку антител и клеточного иммунитета
  • Пептидные. Эти вакцины созданы на основе готовых очищенных белков вируса. Пептидным препаратом является «ЭпиВакКорона»
  • Цельновирионные (цельновирусные). Эти вакцины созданы на базе инактивированных (убитых) или ослабленных частиц вируса. Цельновирионным препаратом является «КовиВак»

Рассмотрим все вакцины от коронавируса более внимательно, определим их виды и отличия.

«Спутник V» (от Исследовательского центра имени )

Препарат создан на основе аденовируса (вируса, вызывающего ОРВИ) человека. Для разработки вакцины вирус лишили гена размножения. Благодаря этому он стал так называемым вектором (транспортным средством для доставки груза в клетки организма). В качестве груза в данном конкретном случае выступает генетический материал заболевания, против которого и работает препарат. Поступая в клетку, груз стимулирует выработку антител.

Важно! После введения первой дозы препарата организм человека от заражения еще не защищен. Это обусловлено тем, что антитела вырабатываются постепенно. Максимальный их уровень обеспечивается примерно через 2–3 недели после постановки второй прививки.

  • Общая эффективность вакцины «Спутник V» составляет 91,6%
  • Защита от тяжелого течения заболевания – 100%

Иммунитет после вакцинации сохраняется примерно 2 года. При этом важно понимать, что антитела в крови присутствуют определенное количество времени, которое во многом зависит от индивидуальных особенностей пациента. В настоящий момент говорят о том, что хватает их примерно на год. При этом клеточный иммунитет сохраняется. Он защищает организм и после исчезновения антител.

«Спутник Лайт» (однокомпонентный вариант вакцины «Спутник V»)

Этот препарат отличается от исходного тем, что достаточно введения одной его дозы.

«ЭпиВакКорона» (от Центра «Вектор»)

Данная вакцина разработана на основе искусственно созданных фрагментов белков вируса. Благодаря этому она дает минимальное количество побочных эффектов. К основным относят возможную болезненность в месте инъекции и незначительное повышение температуры тела на короткое время. При этом и эффективность препарата является более низкой, чем у вакцины «Спутник V».

Для повышения данного показателя проводится двукратная вакцинация с интервалом в 2–3 недели. На формирование иммунитета уходит около 30 дней. Ревакцинация по предварительным оценкам требуется примерно через 6–9 месяцев.

Разработчики уверяют, что препарат может обеспечить защиту организма от различных штаммов коронавируса. Но существует и другое мнение. Некоторые специалисты утверждают, что вакцина уязвима при мутациях вируса.

  • Общая эффективность «ЭпиВакКороны» в настоящий момент не определена
  • Защита от тяжелого течения заболевания – 100%

«КовиВак» (от Центра )

Для производства вакцины использован вирус . Он выращивается специально, а затем убивается химическим путем. Недостатком препарата является то, что он не может проникать в клетки и формировать там клеточный иммунитет. Поэтому на страже здоровья человека, привитого вакциной «КовиВак», стоят только антитела.

При этом препарат демонстрирует эффективность не только в отношении исходного вируса, но и его штаммов. Вводится вакцина двукратно, с интервалом в 2 недели. Иммунитет формируется на 28 день.

  • Общая эффективность вакцины «КовиВак» составляет 90% (по предварительным данным, результатов клинических испытаний еще нет)
  • Защита от тяжелого течения заболевания – 100%

Иностранные виды вакцин от коронавируса

К ним относят: Pfizer/BioNTech и Moderna. Вирусные белки для производства препаратов синтезируются непосредственно в организме человека. Матричная РНК представляет собой своеобразную инструкцию. Прочитав ее, клетка начинает самостоятельно вырабатывать закодированный белок (фрагмент коронавируса).

Читайте также:
Как скомпилировать программу с github

Препараты Pfizer/BioNTech и Moderna сегодня применяются для вакцинации в Великобритании, Израиле, странах Евросоюза, на Украине, в США и в других государствах. Прививки демонстрируют хорошую защиту от тяжелого течения заболевания. Это обусловлено тем, что вакцины проникают вглубь клеток, что имитирует инфицирование и приводит к формированию полноценного иммунитета. Недостатком препаратов является их недостаточная изученность.

Таким средством является вакцина AstraZeneca. Изготовлена она по принципу препарата «Спутник V». В качестве вектора в AstraZeneca выступает модифицированный вирус шимпанзе. Эффективность этой вакцины составляет 79%. При этом препарат на 100% защищает от тяжелого течения вирусной инфекции.

Он используется в странах Евросоюза.

К ним относят Sinopharm и Sinovac.

Основными крупными поставщиками вакцин стали биофармацевтические компании из Китая. Они разработали препараты по принципу российского препарата «КовиВак». Вакцинация Sinopharm и Sinovac проводится не только в КНР, но и в Турции, ОАЭ, Чили, Аргентине и ряде других стран. Во время третьей фазы исследований определена общая эффективность препаратов, которая варьируется от 50% до 84%. При этом от тяжелого течения заболевания средства защищают на 100%.

Сравнение российских препаратов

Для правильного выбора прививки от коронавируса нужно сравнить между собой представленные препараты. Мы провели такое сравнение и оформили его в виде таблицы для вашего удобства.

«Спутник V» «Спутник Лайт» «Кови Вак» «Эпи Вак Корона»
Срок формирования иммунитета (в днях) 42 28 Исследуется 35-40
Формирование антител (в процентах от вакцинированных) У 98% Почти у 97% Исследуется Более чем у 82%
Эффективность Более 91% (в том числе для пациентов старше 65 лет) Почти 80% На стадии исследований В настоящий момент не установлена

Побочные эффекты вакцин

Необходимо сразу уточнить, что все побочные эффекты легкого и умеренного типов являются вариантом нормы.

  • повышение температуры тела до 38 градусов
  • другие симптомы стандартной простуды
  • боль в зоне введения препарата
  • умеренную головную боль
  • дискомфорт в мышцах и суставах

В некоторых случаях также возможно развитие диареи.

После введения препарата пациент на 20–30 минут остается в медицинском учреждении. Это необходимо по причине риска развития аллергической реакции.

Преимущества обращения в МЕДСИ

  • Опытные специалисты. Вакцинация проводится средним медицинским персоналом (медицинскими сестрами) с необходимыми знаниями и навыками
  • Возможности для введения двух препаратов. Иммунизация может проводиться проверенными вакцинами «Спутник V» и «Спутник Лайт», подтвердившими свою эффективность в ходе испытаний
  • Возможности для диагностики. Перед постановкой прививок можно пройти необходимые обследования, осмотры врачей и проконсультироваться с ними
  • Программы подготовки к иммунизации
  • Консультация врача. Наш специалист расскажет, какие есть прививки от ковида, объяснит различия всех разновидностей
  • Комфортные условия проведения процедуры. Вакцинация проводится без очередей и длительного ожидания, в удобный день. Для прохождения процедуры каждый пациент может выбрать ближайшую к нему клинику

Чтобы уточнить, какие виды вакцин против ковида мы используем, или записаться на прививку, достаточно позвонить . Наш специалист ответит на все вопросы. Также запись возможна через приложение SmartMed.

Источник: medsi.ru

Вакцины против коронавируса: настоящее и будущее. Часть I

Вторая волна коронавируса набирает силу как в России, так и во многих других странах. К счастью, большая часть людей болеет бессимптомно или легко. Однако так везет не всем: вирус, получивший научное название SARS-CoV-2, способен не только провоцировать иммунную систему заболевшего убивать или серьезно повреждать его организм в острой фазе заболевания, но также может вызывать долго длящиеся осложнения — так называемый долгий ковид.

Ольга Матвеева («Троицкий вариант» №23, 2020)

Согласно наблюдениям многих врачей, недавно опубликованным в двух научных работах, значительная часть заболевших после прохождения острой фазы болезни неделями или месяцами испытывают слабость, затрудненность дыхания, одышку, ощущают «туман» в голове и т. д. [1, 2]. Врачи озадачены причинами этих осложнений и пока только вырабатывают стратегию помощи этим людям [3].

Поскольку медицинские работники пребывают в некоторой растерянности в отношении протоколов лечения осложнений коронавирусной инфекции, страдающие долгим ковидом пытаются поддержать друг друга психологически. В социальных сетях быстро растут группы, объединяющие пострадавших. Название одной такой группы в «Фейсбуке» — «Нетипичный коронавирус (постковид)».

Не исключено, что долгий ковид может быть вызван аутоиммунными реакциями, спровоцированными вирусом, и/или связан с тем, что вирус способен не только выживать, но и активно воспроизводиться в кишечном тракте у некоторых уже выздоровевших пациентов, выписанных из больницы с отрицательными тестами ПЦР [4].

Еще одна крайне неприятная характеристика вируса — его высокая заражающая способность, начинающая проявляться за два дня до возникновения симптомов у тех, кто уже заразился [5]. Таким образом, коронавирус может распространяться невидимо и незаметно, как угарный газ. Те люди, которые еще не знают, что заразились, уже способны заражать других при коммуникациях на близком расстоянии.

Нет сомнений, что для борьбы с эпидемией, вызванной таким непредсказуемым и опасным вирусом, нужна вакцина. Поэтому в настоящее время ее разработка и успешное внедрение становятся особенно актуальной и важной задачей. По технологии производства все вакцины можно разделить на следующие категории: 1) основанные на убитом вирусе; 2) основанные на аттенуированном вирусе; 3) векторные; 4) белковые субъединичные; 5) пептидные и 6) генетические. К последним можно отнести вакцины, основанные на ДНК или РНК, которые кодируют вирусный белок-антиген [6].

В первой части статьи речь пойдет только о двух категориях вакцин, а именно генетических и векторных. Начнем с генетических. Недавно бизнес-объединение двух компаний — BioNTech и Pfizer — объявило о том, что по предварительным результатам анализа провакцинированных людей вакцина эффективно предотвращает заболевание в 90% случаев [7].

Компания сообщает, что данные получены на основании анализа 94 случаев заболевания, распределенных в группах вакцинированных и плацебо, которые вместе составляют более 40 тыс. участников. Это хотя и предварительные, но очень обнадеживающие новости для всех производителей вакцин.

BioNTech и Pfizer разработали вакцину на основе матричной РНК (мРНК), которая кодирует вирусный белок — другими словами, служит шаблоном для производства шиповидного белка (S-гликопротеина) коронавируса. Этот тип вакцин относится к категории генетических (см. выше). Вакцины, основанные на мРНК вируса, также испытывают компании Moderna в США [8], CureVac в Германии [9] и «Биокад» в России [10]. Moderna находится в заключительной фазе испытаний вакцинной разработки, а CureVac быстро приближается к этой фазе.

Пожалуй, одно из достоинств вакцин, которые разрабатывают компании, перечисленные выше, — то, что они не содержат последовательностей векторного вируса. (О векторных вакцинах и их сравнительных достоинствах по отношению к другим вакцинам речь пойдет ниже.) Соответственно, при применении генетических, а не векторных вакцин в организме вакцинируемого не образуется белков-антигенов, кодируемых векторными вирусами. На эти белки-антигены векторного вируса может вырабатываться иммунитет параллельно с выработкой защитной иммунной реакции на антиген вируса SARS-CoV-2.

Такой иммунитет, если он уже предсуществует, ограничивает эффективность первичного вакцинирования векторными вакцинами. Также иммунитет на векторные антигены, выработанный после вакцинирования именно векторными вакцинами, может свести на нет эффективность вторичного вакцинирования, которое, возможно, будет необходимо в случае кратковременности иммунитета, выработанного на вирусный антиген. Не исключено, что иммунитет от вакцины ослабнет — и через год или два после первой вакцинации потребуется вторая.

Читайте также:
Rautool программа для блокирования USB флешек отзывы

В то же время недостатком мРНКовых вакцин является необходимость их хранения в глубокой заморозке — −80°C и ниже, а также обязательность их транспортировки в сухом льду. Хотя если верить недавним пресс-релизам компании CureVac [11], эта проблема может быть решена. Так, сообщается, что вакцина производства CureVac может храниться около суток при комнатной температуре и долгое время — в обычном холодильнике.

Через несколько дней после выхода пресс-релиза с информацией о промежуточном успехе вакцины BioNTech / Pfizer появилось сообщение из России о том, что по результатам анализа распределения 20 случаев заболевания коронавирусной инфекцией среди более 16 тыс. привитых реальной вакциной или плацебо выявлен тренд, указывающий на эффективность вакцины «Спутник V» [12]. Вакцину разработал Исследовательский центр им.

Гамалеи; она основана на векторной основе двух разных аденовирусов: серотипа 26 и серотипа 5. Оба вектора кодируют шиповидный белок коронавируса как иммуноген. Их совместное последовательное использование для праймирования (первая инъекция) иммунной реакции и бустирования (вторая инъекция) обеспечивают возможность преодоления предсуществующего иммунитета к одному из серотипов аденовируса (серотипу 5 или серотипу 26), который редко, но все-таки бывает у вакцинируемых. Для людей с предсуществующим иммунитетом к серотипу 5 будет более эффективна вакцинация аденовирусом с серотипом 26 и наоборот. Скорее всего, людей с предсуществующим иммунитетом сразу к двум вирусам крайне мало.

Таким образом, российская вакцинная разработка «Спутник V» принадлежит к категории векторных вакцин. Ее способность провоцировать образование нейтрализующих коронавирус антител у провакцинированных добровольцев была продемонстрирована ранее [13].

У векторных вакцин есть некоторые достоинства по сравнению с вакцинами на основе мРНК. В лиофилизированной (высушенной) форме они не требуют постоянного хранения в глубокой заморозке (−80°C). Кроме того, теоретически за счет дополнительного присутствия векторных последовательностей они могут вызывать более длительный иммунитет по сравнению с мРНК вакцинами. Хотя пока что более длительный иммунитет векторных вакцин по сравнению с генетическими — это только предположение, которое требует экспериментального подтверждения.

В то же время, как упоминалось выше, те же дополнительные векторные последовательности, которые могут вызывать более длительный иммунитет, способны помешать вторичной вакцинации. Иными словами, векторная вакцина — это, скорее всего, одноразовая, но долголетающая ракета, в то время как вакцина на основе мРНК — это многоразовый шаттл, возможно, с коротким временем «космического полета».

При необходимости вторичного применения вакцины для поддержания активного иммунитета будет, вероятно, более эффективна вакцина, сделанная на основе другой векторной последовательности. В этом случае удастся избежать мешающей роли иммунитета на сам вектор от первой вакцинации. То есть для создателей вакцин оптимально иметь набор векторных последовательностей, которые происходят из разных апатогенных вирусов человека или животных вирусов, не способных заражать человека. О наборе таких вирусов, используемых современными исследователями в качестве векторов, будет рассказано во второй части статьи.

Вакцины на аденовирусной основе разрабатываются и находятся в последней фазе клинических испытаний не только в России. Речь идет о компании Johnson and Johnson, объединении University of Oxford / AstraZeneca и нескольких китайских фармацевтических компаниях [14, 15].

В настоящий момент производители вакцины «Спутник V» столкнулись со сложностями масштабирования и стандартизации производства, поэтому клинические испытания поставлены на паузу [16]. О проблемах с запуском вакцины в массовое производство сообщил даже президент России. «Есть определенные проблемы, связанные с наличием или отсутствием определенного объема оборудования — „железа“, что называется, — для разворачивания массового производства», — сказал он [16].

В то же время Россия совместно с объединением University of Oxford / AstraZeneca собирается производить векторную вакцину в Новосибирске; основу этого вектора составляет аденовирус шимпанзе. О сотрудничестве и о планах совместного производства недавно сообщил посол России в Лондоне [17]. Не совсем понятно, почему возможности масштабирования производства в Новосибирске существуют для производства импортной аденовирусной вакцины, но отсутствуют для собственной. Какая-то нестыковка!

Кроме того, в рамках международного сотрудничества в России планируется провести последний этап клинических испытаний вакцины, созданной китайской компанией CanSino Biologics. Эта вакцина основана на аденовирусном векторе серотипа 5 [18], и этот же вектор является одним из компонентов вакцинной разработки «Спутник V». Испытания вакцины CanSino Biologics планируется проводить совместно с российской биофармацевтической компанией «Петровакс» в Москве [19].

Предварительные испытания вакцины в Китае, проведенные на нескольких сотнях добровольцев, показали, что она провоцирует высокий уровень нейтрализующих антител у большинства провакцинированных и при этом не вызывает слишком серьезных побочных эффектов. Редкими нежелательными эффектами бывали высокая температура и боль в месте укола [20].

Насколько быстро вирус может изменить свое обличье так, что вакцина ослабнет или перестанет работать? Этот вопрос чрезвычайно волнует создателей вакцин, и его активно изучают. Недавно международный коллектив из более чем 60 авторов опубликовал препринт, затрагивающий эту тему. В работе идет речь о новой мутации, вызывающей аминокислотную замену N439K.

Аминокислота расположена в рецептор-связывающем мотиве рецептор-связывающего домена шиповидного белка коронавируса. Согласно авторам препринта, вирус с этой заменой имеет тенденцию к распространению и преобладанию над другими вариантами. Авторы сообщают, что вариант вируса с аминокислотной заменой N439K возник независимо дважды, в обоих случаях образуя множественные потомственные варианты из более чем 500 геномных последовательностей. По состоянию на октябрь 2020 года мутация обнаруживается в 12 странах, и вариант вируса с этой заменой является уже вторым по частоте встречаемости.

Самое неприятное в этой мутации то, что 15% моноклональных антител из коллекции исследователей и поликлональные антитела из сывороток выздоровевших людей связываются с новым вариантом вируса хуже, чем с исходным вариантом. Связывающая способность некоторых моноклональных антител падает больше чем в два раза. Естественно, падает и способность ряда антител нейтрализовать вирус.

Таким образом, делают вывод авторы статьи, новый вариант вируса представляет собой вариант, убегающий от иммунитета (immune escape variant). Нужно заметить, что пока что работа не прошла научного рецензирования и формально не является публикацией. Всё же не исключено, что авторы правы и появление такой мутации в вирусном геноме сигнализирует о том, что вакцинирование людей нужно будет проводить регулярно и каким-то образом менять «антигенную начинку» вакцины [21].

Кроме перечисленных выше вакцинных разработок, конечно же, есть много других — как в России, так и в мире. Об их достоинствах, недостатках, препятствиях к широкомасштабному применению, а также о перспективах совершенствования я расскажу в следующей части статьи.

P.S. Пока верстался номер, пришла новость о том, что компания Модерна (Moderna, Inc.) объявила о промежуточных результатах своих клинических исследований. Согласно пресс-релизу компании, эффективность мРНК вакцины, которую она разрабатывает против COVID-19, составляет более 94%.

Всего в клиническом испытании Модерны было задействовано более 30 000 участников, которые были разделены поровну между контрольной и опытной группами. В группе плацебо заболело 90 участников, а в группе вакцинированных всего 5. Был также проведен анализ 11 особенно тяжелых случаев заболевания. Все тяжело заболевшие оказались в группе плацебо. Побочные эффекты вакцинации включали боль в месте инъекции (2,7%), усталость (9,7%), боль в мышцах (8,9%), боль в суставах (5,2%). Вакцину Модерны можно хранить при −20°C, что ее выгодно отличает от мРНК-вакцины Пфайзера, которая требует хранения при температуре −80°C [22].

Источник: elementy.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru